

2次元圧延理論

2-Dimensional Analysis on Rolling Process

戸澤康壽 ATE大 大同工業 Yasuhisa Tozawa

名古屋大学 名誉教授 大同工業大学 名誉教授

まえがき

圧延理論とは、圧延プロセスに関わる問題を理論的に解析 するものと理解してよいであろう。狭い意味に解釈して圧延 による被加工材の変形だけを対象にすることもあるが、たと えばロールの変形や圧延機の挙動に対する解析も、その中に 含まれると考えた方が都合がよい。それは、圧延プロセスに おける被加工材の塑性変形は加工機械側の弾性変形と相互に 影響因子となる関係にあり、したがって両者を一体として解 く必要があるからである。

そもそも圧延理論は、圧延時の材料の変形や加工所要力、 あるいは圧延中に現れる種々の現象を理論的に予測すること に目的をおいている。最初の理論がKarman¹⁾およびSiebel²⁾ によって発表されたのは1925年のことであるが、それ以降 今日まで活発に研究が行われ、数多くの成果が得られている。 特に近年はコンピュータの高性能化に追従して計算技術の改 善が進み、数値解析法を利用することによって、解析的には 解くことのできなかったような複雑な問題に対しても的確な 情報が得られるようになった。

一方2次元圧延理論とは、圧延時の材料の変形を平面ひず み変形と仮定することにより、3次元の問題を2次元の定常 変形問題に単純化して解析するものである。この理論は解析 そのものとしては厳密さに欠けるが、板圧延における圧延荷 重や圧延トルクの予測には十分有効であり、それらの値が簡 単に求められることから現在でも広く用いられている。それ と同時に、この理論は圧延解析の基礎となるものであり、圧 延の基本特性を理解する上で極めて重要な役割を果たしてい る。

本稿は、入門講座のこのシリーズでの初回でもあるので、 特に初学者の理解を助けるため、初めに理論に共通の基礎的 事項について若干説明し、そのあと本論である2次元理論に ついて述べることとする。

2.1 平面ひずみ変形の仮定

たとえば板圧延の場合、上下のロールによって圧下されて いる板の変形領域は、圧延方向の長さが板幅に比べて短いの で、板縁近傍以外の大部分の領域では板幅方向にほとんど変 形せず平面ひずみ状態となっている。そのため板幅全体を平 面ひずみと仮定して解析することは、十分に許されることで ある。しかし明らかに3次元の変形をする場合に対しても、 平面ひずみの仮定を用いた解析を利用することがある。それ は次に説明するような理由で解析が容易になるからである。

物体内の一点における応力ならびにひずみの状態が、それ ぞれの3主成分によって表示できることは周知の通りであ る。もし塑性変形だけを対象にする場合は、体積一定の条件 からひずみの1成分が従属変数になるので、独立変数は合計 5個である。解析の対象が2次元の平面応力状態であれば、 応力の1成分が0であるので独立変数の数は4になるのに対 して、同じ2次元でも平面ひずみ状態では、応力の独立変数 も一つ減少して合計3個となり、3次元変形に対する解析よ りはるかに簡単に問題を解くことができる(表1参照)。

平面ひずみ状態の場合、ひずみの生じない方向の応力が他 の二つの方向の応力の相加平均になって、応力の独立変数が 2個に減少することを簡単に説明しよう。塑性変形はすべり (せん断変形)に基づくものであるから、3主応力の大小関係

表1 塑性変形の解析

解析对象	3次元問題	2次元問題		1次元問題
変形条件	一般塑性変形	平面応力状態	平面ひずみ状態	単軸応力状態
主応力	$\sigma_1, \sigma_2, \sigma_3$	$\sigma_2=0, \sigma_1, \sigma_3$	$\sigma_2 = \frac{\sigma_1 + \sigma_3}{2}$	$\sigma_2 = \sigma_3 = 0, \sigma_1$
主ひずみ	$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$	$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$	$\varepsilon_2=0, \varepsilon_1=-\varepsilon_3$	$\varepsilon_2 = \varepsilon_3 = -\frac{\varepsilon_1}{2}$
独立変数の数	5	4	3	2
(応力+ひずみ)	(3+2)	(2+2)	(2+1)	(1+1)

図1 主せん断応力 τ_1 、 τ_3 による巨視的すべり

を $\sigma_1 > \sigma_2 > \sigma_3$ としたとき、図1に模式的に示したように、 σ_2 方向の変形が生じないためには、主せん断応力の $\tau_1 = (\sigma_2 - \sigma_3)/2$ による変形と $\tau_3 = (\sigma_1 - \sigma_2)/2$ による変形と が互いに打ち消すこと、すなわち $\tau_1 = \tau_3$ であることが必要 であり、この関係から次式が導かれる。

2.2 降伏条件

等方性の材料が降伏 (塑性変形) するために満足しなけれ ばならない応力に関する条件式 (降伏条件式) は、主応力 σ_1 、 σ_2 、 σ_3 で表すと、Misesの条件では

$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2\sigma_Y^2 = 6\tau_Y^2$$

.....(2)

となる。ここで、 σ_{Y} は一軸引張りでの降伏応力、 τ_{Y} はせん 断の降伏応力である。平面ひずみ状態の場合は、式(1)を 式(2)に代入することによって次式が得られる。

$$\sigma_1 - \sigma_3 = \frac{2}{\sqrt{3}} \sigma_Y = 2 \tau_Y \cdots \cdots \cdots \cdots \cdots (3)$$

一方、Misesの条件と並んで広く用いられているTrescaの 条件による降伏条件式は次式で表される。

式 (3) と式 (4) とから、材料のせん断降伏応力 $\tau_Y \epsilon$ 基準に とれば、Misesの条件でもTrescaの条件でも、平面ひずみ 状態における降伏条件式は同じ次式 (5) で表されることが わかる。

2.3 変形する物体の解析

変形解析に当たっては、力の釣合い条件式、ひずみの適合 条件式、および構成方程式(応力—ひずみ関係式)の三つを 準備し、それらを境界条件のもとで解くことによって解が得 られる。解析の対象となる材料として、加工硬化を示さない 剛完全塑性材料を仮定した場合は、準備する式として力の釣 合い条件式のほかに、塑性状態にあるための条件式である降 伏条件式だけを用意すればよい。そしてひずみに関係なく応 力の条件だけで問題を解くことができ、解析は簡単になる。

2.4 平均変形抵抗

材料の塑性変形に対する抵抗、すなわち変形抵抗は、実在の材料では一般に加工硬化により、ひずみとともに増加する。 そして塑性ひずみ0の時の抵抗は、降伏応力によって表される。一方連立応力状態のときの塑性変形を支配する応力としては、一般に降伏条件の場合と同じ関数が使われている。したがって平面ひずみ状態のときは、そのときの変形抵抗(2次元変形抵抗)をkとすれば*式(5)と同様の次式(6)が得られる。

一般にkはひずみの関数であるが、完全塑性材料ならば一 定値 ($k=2\tau_Y$)となる。もし加工硬化を示す実在の材料の場 合にもkを一定値と仮定して処理すれば、前節で述べたよう に解析が簡単になる。このときの一定値には多くの場合変形 領域内でのkの平均値をとっており、2次元平均変形抵抗 k_m と呼んでいる。この k_m を用いた降伏条件式は次式で表され る。

 k_m の値は、たとえば圧延の解析では近似的に、圧延前後のkの値 k_1 、 k_2 から次式 (8) により求めている。

2.5 2次元圧延変形における中立点

 h_1 の厚さの板が圧延されて h_2 になったとき、圧延前後の 板の速度をそれぞれ v_1 、 v_2 とすれば、圧延中の厚さhの位置 における速度vとの間には、体積一定の条件と平面ひずみの 仮定とから次の関係が成立する (図2参照)。

^{*} 本講座では記号としてkを使用することに統一されているが、塑性力学ではkは一般にせん断降伏応力 ryに対する記号として使われている。 したがって他の文献を参照する際にはkの意味を確認して頂きたい。

ここで $h_1 > h > h_2$ であるから $v_1 < v < v_2$ となり、板の速度 vは入口から出口に向かって板厚hに反比例して大きくなる ことがわかる。ロールの周速を v_R とすると、一般に

 $v_1/\cos \alpha < v_R < v_2$

であり、したがって接触弧のどこかに板の速度vが

となる、すなわち板の表面速度がロール周速と等しくなる位置が存在する。この位置を中立点(あるいは無すべり点または等速点)と呼ぶ。(以下中立点における値には ¢を添字として付ける。)したがって板は中立点より入口側ではロールより遅れ、出口側では先進すると言うことができ、ロールとの接触面に作用する摩擦せん断応力 τ_fは中立点の前後で向きが反対になる。

3.1 応力状態に対する仮定

変形が板厚方向で均一と仮定した理論であり、解析にはス ラブ法を適用している。スラブ法では、変形領域内に微小厚 のスラブ状要素を考え、その要素の厚さ方向を一つの主方向 と仮定して、その方向でのみ応力は変化することが許される としている。したがってこの理論によれば、ロールとの接触 面に作用する外部摩擦力は内部応力分布に影響を及ぼさず、 要素の面内で応力は均一である。

3.2 力の釣合い条件

とりあえずロールは剛体と仮定する。上下のロール中心を 結ぶ線で境される変形領域の出口面から入口に向かって**x**軸 をとり、入口までの距離を接触長さLとすれば、解析の対象 とする変形領域の範囲はx = Lからx = 0までとなる(図2参 照)。スラブ法解析に従い、まず任意の距離xにある微小厚 さdxの要素に作用する力の釣合いを考える。ロールとの接 触面に作用する圧力(圧延圧力)を p_r とし、摩擦せん断応力 τ_f はロール表面の運動方向と同じ向きの場合を正とすれば、 図2を参照して次式が導かれる。

なお、この式 (11) は、一般に板圧延に対する Karman¹⁾の 微分方程式、あるいは圧延方程式と呼ばれている。

3.3 降伏条件

圧延される材料は等方性の剛塑性体とする。そしてここで は加工硬化を無視した場合について述べる。図2に示した微 小要素において、x方向に垂直な厚さ方向の応力 σ_yは、ロー ルとの接触面に作用する力の鉛直方向の成分との釣合いから 次の関係が導かれる。

$$\sigma_{y} dx = -p_{r} \frac{dx}{\cos\theta} \cos\theta - \tau_{f} \frac{dx}{\cos\theta} \sin\theta$$
$$\therefore \sigma_{y} = -(p_{r} + \tau_{f} \tan\theta) \cdots (12)$$

この σ_y は σ_x と並んで主応力であり、 $\sigma_x > \sigma_y$ であるから、式 (7) によりこの問題に対する降伏条件式として次式が得られる。

3.4 圧延圧力分布

降伏条件式(13)を用いて力の釣合い条件式(11)を解き、 境界条件を適用することにより接触面に沿った圧延圧力*p*, の分布を求めることができる。しかしそれには数値計算によ らなければならないので、簡単に解析解の求められる近似解 法が、Siebel²、Tselikov³⁾その他の人達によりいろいろと提 案されている。ここではNadai⁴⁾の方法を示そう。

板とロールとの間にはアモントン・クーロン摩擦が作用す るものとすれば、摩擦せん断応力 *τ*_fは、中立点の前後で向 きが反対になることを考慮して、接触圧力(圧延圧力)*p*_rに 対し

で表される。ここで複号は、中立点より入口側に対して上側 を、出口側に対して下側をとることとし、摩擦係数 µ は接 触弧のすべての点で一定と仮定する。

降伏条件式 (13) は式 (14) の関係を用いると、

この式で μ tan θ は1に対して十分小さいので無視すれば、

また接触角 に対しても、

と近似すれば、幾何学的関係から得られる次の式は、

となり、したがって

この式は放物線の式であり、ここで行った近似は接触弧の円 弧を放物線で近似したことに相当する。

力の釣合い条件式 (11) と降伏条件式 (16) とから σ_x を消 去して τ_f に式 (14) の関係を代入し、式 (17) ~ (19) を用 いて整理すれば次式が得られる。

ここで

$$\eta \equiv \frac{p_r}{k_m}, \quad \alpha \equiv 2\mu \sqrt{\frac{R}{h_2}}, \quad \tan \varphi \equiv \frac{x}{\sqrt{Rh_2}},$$
$$d\varphi = \frac{d(x/\sqrt{Rh_2})}{1 + (x/\sqrt{Rh_2})^2} \cdots (21)$$

とおいて式 (20) を書き直すと、

 $\frac{d\eta}{d\varphi} \pm a\eta = 2\tan\varphi \cdots \cdots \cdots (22)$

ここで $\tan \varphi \cong \varphi$ として計算すると、

積分定数*C*を境界条件から決める。入口面x = Lにおいて後 方張力による応力 $\sigma_x = \sigma_b$ が、出口面x = 0において前方張 力による応力 $\sigma_x = \sigma_f$ が、それぞれ作用しているとすれば、 式 (16)を用い、式 (21)の記号で書き表すと、

入口面
$$\varphi = \varphi_1$$
で $\eta = \eta_1 = 1 - \frac{\sigma_b}{k_m}$
出口面 $\varphi = 0$ で $\eta = \eta_2 = 1 - \frac{\sigma_f}{k_m}$ (25)

式 (24) の複号の上側に対しては入口面の、下側に対しては 出口面の、それぞれの境界条件式 (25) によって*C*を決定す れば、圧延圧力は入口側では

$$p_{r} = k_{m} \bullet \eta = k_{m} \left[\left\{ \eta_{1} + \frac{2(1 - a\varphi_{1})}{a^{2}} \right\} e^{a(\varphi_{1} - \varphi)} - \frac{2(1 - a\varphi)}{a^{2}} \right] \cdots (26)$$

出口側では

によって表され、xの関数として求められる。そして中立点 の位置は式 (26) と式 (27) の p_r が等しくなる φ の値 φ_{ϕ} から 求められる。また接触長さLは、入口面のxとして式 (19) から

$$L = \sqrt{R \ (h_1 - h_2)} \ \cdots \ (28)$$

により与えられる。

図3は*k*_mで無次元化した圧延圧力*p*_rの接触領域における 分布を、式 (26) および式 (27) に従って計算した結果の一 例であり、張力の影響が示してある。ここで計算条件の*r*は

図3 圧延圧力分布に及ぼす張力の影響

圧下率 $(h_1 - h_2) / h_1$ である。圧延圧力は、入口面 (x/L = 1.0) および出口面 (x/L = 0) から離れるに従って増加し、 式 (26) による入口側の曲線と式 (27) による出口側の曲線 との交点で求まった中立点においてピークを示すが、張力を 付加すると全領域で減少する。そして中立点の位置は後方張 力を加えると前方に、前方張力を加えると後方へ移動するが、 前後方等しい張力を付加したときには前方に移動する。なお 後述するように、圧延荷重は圧延圧力を接触長さ全体にわた って積分することにより求められるが、ここに示した結果か ら、張力の付加による圧延荷重の低下は、前方張力より後方 張力の方が効果の大きいことが理解できる。

x方向の応力 σ_x は、式 (16) によりp,から直ちに求められ る。したがって図3の曲線は、右側縦軸の値を基準にとれば そのまま σ_x の分布を示すことになる。この結果から σ_x は、 無張力のときは全領域で負であり、したがって圧延による変 形は3軸圧縮応力状態で行われており、材料の圧密に効果の あることが分かる。

図4は、図3での無張力のときの結果に対して摩擦係数の 影響を示したものである。摩擦係数の増加とともに圧延圧力 は増加し、中立点の位置は中央寄りに移動する。なお μ = 0.3に対する曲線の破線部分については、3.6節で説明する。

3.5 高摩擦状態に対する解析

板とロールとの接触面における摩擦抵抗が大きい場合に は、接触面ではすべりは生じず付着摩擦状態となる。この ときには、板とロールとの相対的移動は板表層のせん断変形 によって生じると考えることができるので、板のせん断の変 形抵抗 τ と2次元変形抵抗 k との関係

図4 圧延圧力分布に及ぼす摩擦係数の影響

から摩擦せん断応力 τ_f は

とおくことができる。したがって付着摩擦状態に対しては、 すべり摩擦状態に対する式

に代わり、

として解析する必要がある。この場合 $k = k_m$ (一定) ならば τ_f は定数となるので、力の釣合い条件式 (11) は容易に解け τ_p ,が求められる。

なおすべり摩擦に対して、ここまでは摩擦せん断応力 τ_f を上記の式 (14) で表してきたが、この付着摩擦状態を基準 にして次式で表現する場合もある。

このmはせん断摩擦係数 (friction factor) と呼ばれ、m=1のとき付着摩擦状態を表すことは言うまでもない。摩擦せん断応力をこのように表すと、 $k = k_m$ のときmが接触弧のすべての点で一定ならば τ_f は定数となり、付着摩擦状態に対するときと同様に p_r は容易に求められる。(この取扱いはSiebelが初期の研究²⁾で用いた仮定 $\tau_f = \pm \mu k_m$ とその発想は異なるが同じであり、またNadai⁴⁾は τ_f の内容には触れずに単に定数とおいたときの解析もしている。)

図5は、 τ_f を式 (32)で表し、 $k = k_m$ としたときの、図4 と同じ圧延条件に対して計算した圧延圧力の分布である。圧 延圧力および中立点の位置に及ぼす摩擦抵抗の影響について は図4の場合と同様であるが、分布曲線の形状はかなり直線 に近く、図4の場合ほど圧延圧力の上昇は急激ではない。こ

図5 $\tau_f = \pm mk_m/2$ としたときの圧延圧力分布

のことは、図4の場合には $|\tau_f|$ が式 (14) に従って p_r の上昇 とともに増加することから容易に理解できる。

3.6 すべり摩擦と付着摩擦とが混在する場合の解析

すべり摩擦状態に対してアモントン・クーロン摩擦が作用 するとして

を採用した場合、 μ が小さくともp,が大きくなるとやがて は τ_f は次式

の条件に達し、付着摩擦状態になる。そしてこの付着摩擦状態になる境界の*p*,は、この両式から

として与えられる。

さて、摩擦せん断応力 τ_fに式 (14) を仮定して求めた圧延 圧力p,は、図3および図4に示したとおり、一定のµに対し 入口面および出口面から離れるに従って増加している。その ためそのように増加したp,が式 (33)の条件に達すると、そ の点より内側の中立点を含む領域では付着摩擦状態となり、 接触弧内ではすべり摩擦と付着摩擦の領域が混在することに なる。したがってこのような場合の圧延圧力の分布を求める には、それぞれの領域に対し τ_fとして式 (14) または式 (31) を用いて解析し、それらの領域の境界でp,が式 (33)を満足 するという条件を用いればよい。

図4に示した例においては、 $\mu = 0.075$ および $\mu = 0.15$ の 場合は式 (33)の条件に達する領域がないので、すべてすべ り摩擦状態になっている。それに対し $\mu = 0.3$ では式 (33) の条件に達するのは $p_r/k_m = 1/2\mu = 1.6_7$ のときであるから、 それより大きい領域では付着摩擦状態になっており、図では 破線でその領域の圧力分布が示してある。

3.7 摩擦せん断応力に対する仮定と圧延圧力分布

板とロールとの界面における摩擦は、トライボロジーの観 点からもいろいろ検討されている問題であるが、板の変形に 影響を与える外力としての取扱いにも多くの提案がなされて いる。前節までの解析で、摩擦せん断応力をどのように仮定 したか説明してはあるが、ここにあらためてまとめると、

(1) すべり摩擦状態を対象に、圧延圧力に比例する。[式(14)]

- (2) すべり摩擦状態を対象に、板のせん断変形抵抗に比例 する。[式 (32)]
- (3)付着摩擦状態を対象に、板の2次元変形抵抗に等しい。[式 (31)]

これ以外にも摩擦せん断応力をつぎのように仮定したもの がある。

(4) 板とロールとの相対すべり速度に比例する4)。

(5) 中立点近傍の相対すべりの少ない領域では、直線的に 正から負に変化する⁵。

これらの仮定に基づいた摩擦せん断応力の表示式を用いて 解析し、それぞれに対して求めた圧延圧力の分布を摩擦せん 断応力の分布とともに図6⁶⁾に示してある。図中の(1)~(5) は上記の仮定の番号に対応しており、したがって(1)~(3) についてはすでに説明したとおりである。仮定(4)の場合 には仮定(1)の場合とは反対に $|\tau_f|$ は入口および出口から 離れるに従って減少するので、圧延圧力の分布曲線は上に凸 となる。そして τ_f は、中立点において正から負に不連続に ではなく、徐々に変化するので、圧力分布には鋭いピークが なくなり、なめらかな山形曲線になる。仮定(5)の場合も 同様であり、山形曲線になっている。(実測結果⁷⁾では、圧 延圧力の分布曲線には鋭いピークは見られず、入口および出 口の近傍を除いて上に凸になっている。)そしてこれらの場 合には、圧延圧力が最大になる位置は中立点とは一致せず、 入口側にずれる。

図6 種々の摩擦せん断応力分布に対する圧延圧力分布⁶⁾

図6では、仮定(2)と(4)の圧延圧力の値が仮定(1)など よりも小さくなっているが、これは出口面での摩擦せん断応 力の値を他の仮定の場合と同じにしたときの計算結果だから であって、この値が大きくなれば当然ながら圧延圧力も大き くなる。したがって摩擦せん断応力をどのように表し、また どのような値を採るかによって、圧延圧力、ひいては圧延荷 重の計算値は大きく変化する。

3.8 加工硬化を考慮した解析

材料の加工硬化を無視し平均変形抵抗kmを用いることに よって解析が簡単になることは2.4節で述べたとおりであ り、前節までその解析について説明してきた。しかしそれと は別に変形抵抗kを一定とはせず加工硬化を認めた近似解析 も行われている。ここではBland & Ford⁸⁾による解法を紹介 する。

3.4節と同様に、摩擦せん断応力 τ_f を式 (14) で表し、 μ tan θ を無視すれば、降伏条件式は式 (16) と同じ形の

 $\sigma_x + p_r \cong k \cdots \cdots \cdots \cdots \cdots (35)$

となる。また接触角 6 についても、十分に小さいので

の近似を用いれば、式(17)、(18)の関係から

$dx \cong Rd\theta \cdots \qquad \cdots$	$\cdot (37)$
$h \cong h_2 + R\theta^2 \cdots$	\cdot (38)

が得られる。一方、力の釣合い条件式(11)は、その第1項 を変形すると、

$$\frac{\sigma_x}{k}\frac{d}{dx}(kh) + kh\frac{d}{dx}\left(\frac{\sigma_x}{k}\right) + 2\left(p_r \tan\theta - \tau_f\right) = 0 \cdots \cdots (39)$$

変形領域内では、板厚hが減少するとともに加工硬化によっ てkは増加するので、それらの積khの変化は少ない。従っ てこの式 (39)において第1項は相対的に小さく、これを無 視することとする。そして式 (35) ~ (38)を用いて整理し、 θ を変数にとって積分して積分定数を入口面および出口面 での境界条件から決定すれば、圧延圧力 p_r として次式が得 られる。すなわち、入口側では

$$p_{r} = k \left(1 - \frac{\sigma_{b}}{h_{1}} \right) \left(\frac{h_{2}}{h_{1}} + \frac{R}{h_{1}} \theta^{2} \right)$$
$$\times \exp \left[2 \mu \sqrt{\frac{R}{h_{2}}} \left\{ \tan^{-1} \left(\alpha \sqrt{\frac{R}{h_{2}}} \right) - \tan^{-1} \left(\theta \sqrt{\frac{R}{h_{2}}} \right) \right\} \right] \cdots (40)$$

図7 加工硬化性材料に対する圧延圧力分布

出口側では

ここで入口面の θ の値 α は式 (38) から

によって定まり、したがってkが θ の関数として与えられれば、 p_r は θ の関数として求められたことになる。

図7の実線は式(40)および式(41)により計算した圧延圧 力 $p_r \epsilon_k$ で無次元化した結果であり、比較のため剛完全塑性 材料($k = k_m$)に対する式(26)、(27)の結果 ϵ_{k_m} で無次元 化したものも点線で示してある。さらに板厚の減少すなわち θ の減少に伴うkの変化(加工硬化)が図の曲線で示された 場合に対する式(40)、(41)の結果を式(8)による k_m を用い て無次元化したときの結果も破線で示してある。これらの結 果によれば、圧延圧力をそれぞれの場所における変形抵抗で 無次元化して表せば加工硬化の影響は極めて僅かである。し かし圧延圧力そのものは材料の加工硬化特性に依存し、出口 側では入口側より高くなることが分かる。

4 2次元不均一变形理論

4.1 応力状態に対する仮定

板のロールとの接触面に作用している摩擦抵抗が小さいと きはともかく、たとえば付着摩擦状態のときのように摩擦せ ん断応力が大きい場合に対しては、それの変形に及ぼす影響 を無視しないで解析する方が適切であろう。ここで言う不均 一変形理論とは、板厚内でのせん断応力を考慮に入れ、変形 が板厚方向で不均一であることを認めた理論であり、 Orowan⁹⁾によるものを示す。なおロールは前章と同じく剛

体と仮定して話を進める。

図8 (a) に示したように、ロールの接触角 θ の点を通りロ ール表面と垂直に交わる半径rの円弧を考えると、変形領域 内の位置は、そこを通る円弧の位置を表す θ と、その円弧 の半径線の水平線に対する角 β ($-\theta \le \beta \le \theta$) とによって指定 できる。そしてその位置における応力状態は円弧に沿った方 向の圧縮応力 p_r 、円弧に垂直な方向の圧縮応力q、および円 弧に平行に作用するせん断応力 τ によって表すことができ る。なお τ の正負はロールとの接触面 $\beta = \pm \theta$ で摩擦せん 断応力 τ_f の正負と一致するように定める。

ここでOrowanはこれらの応力成分に対してつぎの仮定を おいた。すなわち、円弧に沿った方向の圧縮応力p,は円弧 上で一定とした。したがってp,は圧延圧力に等しく、 β に は無関係で θ のみの関数となる。またせん断応力 τ に対し ては、 $\beta = \pm \theta$ で $\tau = \tau_f$ 、 $\beta = 0$ で $\tau = 0$ の条件を満足す るものとして、

と仮定した。

4.2 力の釣合い条件と降伏条件

ロールの接触角 $\theta \geq \theta + d\theta$ の点をそれぞれ通る円弧によって囲まれた要素(図8b)について、ロールと接触している上下の微小長さ $Rd\theta$ に作用している圧延圧力p,と摩擦せん断応力 τ_f (図の向きを正)とによる力の水平成分と、左右の円弧面に作用する水平方向の圧縮力 $Q \geq Q + dQ$ との釣合いから、式(11)と同様につぎの釣合い条件式が導かれる。

$$\frac{dQ}{d\theta} - 2R(p_r\sin\theta - \tau_f\cos\theta) = 0 \cdots (44)$$

ここでQは、円弧の微小長さ $rd\beta = hd\beta / 2\sin\theta$ に作用する $q \ge \tau$ による力の水平成分 (図8c参照)を円弧の長さ全体に わたって積分したものと等しいから、次式が得られる。

式 (6) の降伏条件式を上記の応力成分 p_r , q, τ によって 書き表せば、 $p_r > q$ であるから、次式が得られる。

4.3 圧力分布

摩擦せん断応力 τ_f の大きさは3.5節で述べたようにk/2を 超すことはないので、

とおくことにする。ここで λ は式 (32)中のmとは異なり、 すべり摩擦の場合は $\lambda = 2\mu p_r/k$ をとるものとする。 τ に 対して式 (43)、(47)の関係を用い、式 (46)を式 (45)に代 入すれば、

ここで*w*はOrowanの*w*関数と呼ばれるが、 θ が、したがっ て β も小さいとしてsin $\theta \cong \theta$ 、cos $\beta \cong 1$ とすると、

いまQの板厚hにわたっての平均値 q_m 、すなわち

を導入し、さらに板厚hに対しては

の関係を用いて、式 (44) と式 (48) とから*p*,を消去した式 を整理すると次式が得られる。

$$\frac{dq_m}{d\theta} = \frac{R}{h} \left[k \left| 2w \pm \lambda \left(\frac{1}{\theta} - \frac{1}{\tan \theta} \right) \right| \sin \theta \mp \lambda k \cos \theta \right] \cdots (52)$$

この式を積分することによって q_m が、したがって式 (50) と式 (48) から p_r が求められることになる。

Orowanは、付着摩擦に対しては $\lambda = 1$ として、すべり摩擦に対してはQのうち τ による力を無視して、解を求めている。ここでは解析解を求めるためのSims¹⁰⁾による近似解法を説明しよう。

この解法では、付着摩擦状態のみを対象としたうえ、 τ による水平方向の力を無視している。また材料は剛塑性体を 仮定し、 $k = k_m$ (一定)としている。 τ による水平方向の力 は式 (48)の右辺第3項で表されており、これを無視すれば 式 (49)のwに付着摩擦の条件 $\lambda = 1$ を代入することにより 式 (48)から式 (50)を用いて次式が得られる。

そして接触角 θ が小さいことによる近似 $\sin \theta \approx \theta$ 、 $\cos \theta \approx 1$ 、 $h \approx h_2 + R \theta^2$ を用いると、式 (52) は

この式を積分することにより、

$$q_m = k_m \left\{ \frac{\pi}{4} \ln \left(\frac{h_2}{R} + \theta^2 \right) \mp \sqrt{\frac{R}{h_2}} \tan^{-1} \left(\theta \sqrt{\frac{R}{h_2}} \right) \right\} + C \cdots (55)$$

ここで複号は、中立点より入口側で上側、出口側で下側をと るので、次の境界条件、

を用いて、それぞれの領域の式に対する積分定数を決定し、 得られた*q*mを式 (53) に代入すれば圧延圧力*p*rが求まる。す

図9 不均一変形理論に基づく圧延圧力分布(均一変形理論との比較)

なわち、入口側では

出口側では

$$p_r = k_m \frac{\pi}{4} \left\{ 1 + \ln\left(\frac{h}{h_2}\right) \right\} + k_m \sqrt{\frac{R}{h_2}} \left\{ \tan^{-1} \left(\theta \sqrt{\frac{R}{h_2}}\right) \right\} - \sigma_f \dots \dots \dots (58)$$

図9には、Simsによる式 (57)、(58)の結果とOrowanの 基礎式を数値積分によって解いた柳本¹¹⁾の結果を実線で、 さらにそれぞれの摩擦条件に対応するNadaiの式 (均一変形 理論)の結果も比較のため破線で示してある。なおすべり摩 擦に対するOrowanとNadaiの結果で $p_r/k_m \ge 1.6_7$ の部分が付 着摩擦の領域である。この図から分かるように、不均一変形 理論によれば、圧延圧力は大部分の領域で均一変形理論と同 様に摩擦抵抗の大きいほど大きくなるが、入口および出口の 近傍ではその大小関係は逆転する。また均一変形理論では板 厚内のせん断応力を無視しているため、それを考慮した不均 一変形理論より圧延圧力を変形領域全体にわたって同程度に 大きく見積ることになる。

5.1 偏平変形の解析

前章まではロールを剛体と仮定して接触弧に作用している 圧延圧力を求めてきたが、実際にはロールは弾性体なので圧 延圧力によって変形が生じる。ロール中心に対して表面変位 を生じさせる偏平変形に関しては、Hitchcock¹²⁾が圧延圧力 の接触弧に沿った分布形状を長円と仮定し、変形後も接触弧 の形状は円弧で表されるとして解析し、その曲率半径*R*[']を 次式で示している。

ここで*E、*_νはそれぞれロールの縦弾性係数およびポアソン 比、*P*は単位板幅あたりの圧延荷重である。

5.2 偏平変形を考慮したときの圧延圧力の解析

厚さ h_1 の板が圧延後 h_2 になったとすれば、ロールの偏平 変形を考慮すると、図10に示すように出口面は x_0 、だけずれ て、接触長さは長くなる。偏平変形を考慮した圧延圧力の解 析では、板と接触している領域におけるロール形状を変形後 も円弧としているので、前章までの数式において、ロール半 径 $R \epsilon R'$ におきかえ、新たな出口面からの水平距離として $x' \epsilon$ 、接触角として傾斜角 θ' をとり、入口面の接触角は α を α' とすることにより、剛体ロールを仮定した前章までの 諸式がそのまま適用できる。

6.1 圧延荷重

単位板幅あたりの圧延荷重Pは、これまで求めてきた圧延 圧力 p_r と摩擦せん断応力 τ_f の鉛直成分を接触長さ全体にわ たって積分することによって求められる。すなわち図2を参 照し、ロールの偏平変形を考慮すれば、

$$P = \int_{0}^{x_{\phi}} \left(p_{r} - \tau_{f} \tan \theta' \right) dx' + \int_{x_{\phi}}^{L'} \left(p_{r} + \tau_{f} \tan \theta' \right) dx' \cdots (60)$$

ここで τ_fの成分を無視すれば、

となる。 p_r が θ' の関数として与えられているときは、同様

と書ける。これらの式を計算するには一般に数値積分を必要 とするので、Hill¹³⁾は均一変形理論のbland & Fordの解、式 (40)、(41) において $k = k_m$ (一定) として計算した結果をも とに、次の近似式を示した。

$$P = \left(k_m - \frac{\sigma_b + \sigma_f}{2}\right) \sqrt{R'(h_1 - h_2)} \bullet f_P \cdots \cdots \cdots \cdots \cdots (63)$$

$$f_{P} = 1.08 + 1.79\mu \left(1 - \frac{h_{2}}{h_{1}}\right) \sqrt{\frac{h_{2}}{h_{1}}} \sqrt{\frac{R}{h_{1}}} - 1.02 \left(1 - \frac{h_{2}}{h_{1}}\right) \cdots (64)$$

またSims¹⁰⁾は、不均一変形理論の解、式 (57)、(58) を式 (62) によって積分し、式 (63) 中の*f_P*として次式を示してい る。

ここではロールの偏平変形を考慮した式を示しており、したがって接触弧の曲率半径Rを含んでいる。一方Rは式 (59)に示されている通り圧延荷重Pに依存する。そのためPとRとは両者の関係式を連立させて求める必要がある。

6.2 圧延トルク

単位板幅あたり、ロール1本当たりの圧延トルクTは、摩擦せん断応力 τ_f によって次式で表される (図2参照)。

この式(66)において右辺は同じ程度の量の差であるため計 算による誤差が大きくなりやすい。そこでこれを避けるため、 次のように別の表現をとる。すなわち、板全体についての水 平方向の力の釣合いを単位板幅あたりで考えると、

$$h_{1}\sigma_{b} - h_{2}\sigma_{f} + 2\int_{0}^{L}p_{r}\tan\theta' dx' + 2\int_{0}^{x_{f}'}\sigma_{f}dx' - 2\int_{x_{f}'}^{L}\sigma_{f}dx' = 0$$
.....(67)

式 (67) を式 (66) に代入しtan θ'に対して式 (17) と同様の 近似を用いれば、

98

 p_r が θ の関数として与えられているときは、dx'に対して式 (37)と同様の近似式を用いることによって式 (68) は次式

$$T \cong RR' \int_0^{a'} p_r \theta' d\theta' + \frac{R}{2} (h_1 \sigma_b - h_2 \sigma_f) \dots (69)$$

と書けるので、式 (68) あるいは式 (69) によって単位板幅 あたりの圧延トルクは計算できる。

Hill¹³は、すべり摩擦に対するBland & Fordの p_r の式(40)、 (41) において $k = k_m$ (一定) として式 (69) を計算した結果 をもとに、次の近似式を示している。

$$T = \frac{k_m R}{2} (h_1 - h_2) \bullet f_T + \frac{R}{2} (h_1 \sigma_b - h_2 \sigma_f) \dots (70)$$

$$f_T = 1.05 + \left| 0.07 + 1.32 \left(1 - \frac{h_2}{h_1} \right) \right| \frac{\mu}{\alpha'} \sqrt{1 - \frac{h_2}{h_1}} - 0.85 \left(1 - \frac{h_2}{h_1} \right)$$
.....(71)

Sims¹⁰⁾は付着摩擦を対象とし、 $\tau_f = \pm k_m/2$ (一定)とし て解析しているが、この場合には式 (66) で独立変数を θ' に とりなおした次式、

この式 (72) を直接積分することによって容易にTが求められる。すなわち

$$T = \frac{k_m R R'}{2} (\alpha' - 2\theta'_{\phi}) \cdots (73)$$

2次元圧延理論について均一変形理論と不均一変形理論を

中心に述べた。一般的には後者の方がより望ましい理論では あるが、たとえば薄板の冷間圧延における荷重やトルクに対 しては前者でもかなり的確な情報が得られる。しかし実際に は理論そのものより、対象としている材料の変形抵抗とかロ ールとの接触面における摩擦抵抗などをどのような値として 理論式に入れるかの方がむしろ問題であって、このことは理 論を有効に利用するために留意していなければならない点で ある。

参考文献

- T. von Karman : Z. Ang. Math. u. Mech., 5 (1925), 139.
- 2) E. Siebel : Stahl u. Eisen, 45 (1925), 1563.
- 3) A. I. Tselikov : Metallurg, 6 (1939), 61.
- 4) A. Nadai : J. Appl. Mech., 6 (1939), A54.
- 5) A. I. Tselikov : Stress and Strain in Metal Rolling, MIR Pubrs, (1967), 88.
- A. H. El-Waziri : Iron and Steel Engr., (1963-10), 73.
- 石川孝司,戸澤康壽,中村雅勇,加藤隆,加藤憲明: 塑性と加工,22 (1981),816.
- D. R. Bland and H. Ford : Proc. Instn. Mech. Engrs., 159 (1948), 144.
- E. Orowan : Proc. Instn. Mech. Engrs., 150 (1943), 140.
- R. B. Sims : Proc. Instn. Mech. Engrs., 168 (1954), 191.
- 柳本 潤:70回塑性加工学講座テキスト,日本塑性加工 学会,(1998),29.
- 12) J. H. Hitchcock : Am. Soc. Mech. Eng. Research Pubn., (1930), Appendix I.
- R. Hill: The Mathematical Theory of Plasticity, Oxford, (1950)

(2001年10月29日受付)