放射光によるX線応力解析の基礎と応用

放射光の鉄鋼研究への応用-2

Fundamentals and Applications of X-Ray Stress Analysis Using Synchrotron Radiation

秋庭義明 Yoshiaki Akiniwa 名古屋大学 大学院工学研究科 機械理工学専攻

し はじめに

構造用部材の設計、製作、維持保全においては、外部より 作用する負荷応力のみならず、機械加工、熱処理、表面処理、 溶接等によって生じる残留応力の把握が不可欠である。特に、 機械構造部材の損傷で最も問題となる疲労や応力腐食割れの 場合には、部材表面もしくは表面下の応力分布の評価が重要 である。

X線応力測定法は、多結晶材料中の応力を、非破壊的に測 定する手法として極めて有用であり、その標準化が図られる とともに現場技術として実用化され^{1,2)}、多方面で利用され てきている。近年、構造部材中の応力測定法に関する要求は ますます厳しくなってきており、微小領域内の応力や、材料 内部の応力分布の評価が求められるようになってきた。前者 では、急激な応力勾配が存在するような応力集中部の応力分 布や、MEMSのような部材そのものが微小である場合が対 象となる。また、極薄膜のように平面内では十分大きな領域 でも、厚さが極めて薄い場合も同様である。このような場合、 従来のX線法(封入管を用いたX線回折装置による測定法) では、測定に極めて長時間を要し、また必ずしも十分な精度 が得られない場合が多く限界があった。また後者では、各種 機械加工面、ピーニング等の表面処理材の内部応力分布が対 象となるが、X線の侵入深さが数 µm 程度であるため、機械 加工や表面改質によって導入される数100 µm 程度の領域に 拡がる残留応力分布を得るためには、電解研磨によって表面 層を数µm除去して、その時点での表面近傍の残留応力を測 定、再び表面層の除去、測定を繰返す手法が用いられてきた。 しかしながら、この逐次表面除去法で測定された残留応力に は表面を除去したことによる残留応力の再配分の効果が含ま れるため、それを補正する必要があり、かつ厳密な意味での 非破壊測定ではないため、実製品そのものの測定はできない 等の問題があった。

封入管を用いたX線に対して、挿入光源が設置された第3 世代の放射光では、高輝度のX線を任意の波長で取り出すこ とができ (Kα1とKα2の問題もない)、平行性にも優れるた め、微小部の応力測定に適する^{3,4)}。また、100 keV を超え る高エネルギのX線を得ることができる。高エネルギーのX 線になるほど波長は短く、X線の侵入深さは大きくなり、封 入管X線としてよく用いられるCr-Kα特性X線に比較して、 数100倍以上材料内部の情報を得ることもできる。中性子法 では、さらに内部の情報が得られるものの、回折強度が弱い ために数mm³程度以上の測定体積が必要とされ、空間分解 能に限界がある^{5,6)}。実験室X線、放射光、中性子法いずれ も結晶からの回折を原理としており、回折面間隔の変化を捉 えるが、得られる情報範囲の違いが3者の相補性を生む。本 稿では、放射光の特徴を利用したひずみ・応力解析の基礎を 略述した後、これまでの応力評価研究について紹介し、今後 の展望を述べる。

2 X線応力測定の原理

2.1 sin² ψ法

材料に応力が作用してひずみが生じると、格子間隔が変化 する。X線応力測定法は、X線の回折現象を利用して格子間 隔を測定し、これをもとに応力を求めようとするものである。 図1は多結晶材料におけるX線の回折を模式的に表したもの である。波長λのX線を入射すると、次のBraggの条件を満 足する回折角θに回折X線が観察される。

ここでdは回折格子面の間隔である。いま、無ひずみ状態での回折面間隔を d_0 、回折角を θ_0 とし、変形後のそれらをそれぞれ $d = d_0 + \Delta d$ 、 $\theta = \theta_0 + \Delta \theta$ とする。入射X線の波長を一定とすると、回折角の変化量 $\Delta \theta$ は式(1)より次のよう

になる。

$$\Delta \theta = \theta - \theta_{0}$$

= $-\tan \theta_{0} \cdot (\Delta d/d_{0})$
= $-\tan \theta_{0} \cdot \epsilon$ (2)

上式より、回折角変化からひずみ ε が求められる。ここで、 同一のひずみに対して $\tan \theta_0$ が大きいほど、つまり θ_0 が 90°に近いほど回折角変化も大きくなり、ひずみ感度が高く なる。

図2に示すように応力測定点をOとし、主応力および主ひ ずみをそれぞれ σ_1 , σ_2 , σ_3 , $ε_1$, $ε_2$, $ε_3$ とする。ここで、 X線侵入深さが浅い場合、平面応力状態 (σ3=0) とみなす ことができる。試料面内で、主応力σ1方向からφだけ回転 した方向にx-y軸をとり、それぞれの方向の応力を σx' σy' とすると、ひずみ ε_x , ε_y , ε_z は次式で与えられる。

図2 試料表面での応力状態

$$\varepsilon_{x} = (\sigma_{x} - \nu \sigma_{y})/E$$

$$\varepsilon_{y} = (\sigma_{y} - \nu \sigma_{x})/E$$

$$\varepsilon_{z} = \varepsilon_{3} = -\nu (\sigma_{x} + \sigma_{y})/E \dots (3)$$

ここで、Eはヤング率、レはポアソン比である。

いま、測定したい応力を oxとする。図2でOP方向のひず み εψは主ひずみを用いて次のように表わせる。

ここで、ひずみの変換式および式(3)を用いると次式が得 られる。

$$\varepsilon_{\psi} = \left[\left(1 + \nu \right) / E \right] \sigma_{x} \sin^{2} \psi - \left(\nu / E \right) \left(\sigma_{x} + \sigma_{y} \right) \quad \cdots (5)$$

式(2)を用いると、回折角で表わすことができる。

すなわち、回折角2 θ とsin² ϕ の関係をプロットすると (sin² 𝔄線図)、両者は直線関係となり、その傾きは弾性定数とσx の積となる。従って、あらかじめ弾性定数がわかっていれば、 $2\theta \ge \sin^2 \psi$ の関係の傾きより σ_x を求めることができる。本 方法は $\sin^2 \phi$ 法と称され、無ひずみ状態での回折角が $\tan \theta_0$ の積としてのみ関係するため、00に高精度が要求されない 点に優れ、現場技術として活用されるゆえんである。

なお、上述の弾性定数Eおよび v は、機械的な値とは異な り、回折面に依存するためX線的弾性定数と称され、あらか じめ既知の応力に対して測定しておく必要がある。

X線の侵入深さ内で急激な応力勾配がある場合や、集合組 織がある場合、また三軸応力状態にある場合にはsin² ψ線図 は非線形になり、他の解析手法を用いる必要がある。

2.2 非線形解析法

X線により測定される応力は、表面下の応力分布の重み付 き平均であり、次式で与えられる⁷⁻⁹⁾。

$$\left\langle \sigma_{\mathbf{x}}(T) \right\rangle = \frac{\int_{0}^{B} \sigma(z) e^{-z/T} \mathrm{d}z}{\int_{0}^{B} e^{-z/T} \mathrm{d}z} \qquad (7)$$

ここで、zは表面からの距離、 $\sigma(z)$ は残留応力分布、hは板 厚、Tは侵入深さである。試験片厚さが、侵入深さTに対し て十分大きいとすると次式となる。

 $\left\langle \sigma_{x}(T) \right\rangle = \frac{1}{T} \int_{0}^{h} \sigma(z) \exp\left(-z/T\right) \mathrm{d}z$ (8)

また、X線で測定される回折角も重み付き平均応力で表され るため、回折角は次式で与えられる。

$$\langle 2\theta \rangle = -\frac{2(1+\nu)}{E} \tan \theta_0 \left\langle \sigma_x(T) \right\rangle \sin^2 \Psi \\ + \frac{2\nu}{E} \tan \theta_0 \left(\left\langle \sigma_x(T) \right\rangle + \left\langle \sigma_y(T) \right\rangle \right) + 2\theta_0 \cdots (9)$$

ここで、 $\langle \sigma_x(T) \rangle$ は式 (7)より得られる。 $\langle \sigma_x(T) \rangle$ が内部 方向に分布を有する場合、 ψ 角の変化とともに侵入深さが変 化するため、 $\sin^2 \psi$ 線図は非線形となる。実験的に得られた 非線形な $\sin^2 \psi$ 線図をもとに、逆問題解析することによって $\sigma(z)$ を求めることができる。

2.3 X線侵入深さ一定法

前述のごとく、X線法によって測定される応力は、試料内 部方向の重み付き平均であり、式(7)で与えられる。この とき、 ϕ 角の変化によらず侵入深さを一定にすることができ れば、 $\sin^2 \phi$ 線図は直線となり、非線形解析によらずに残留 応力が評価できる。

並傾法におけるX線経路についての模式図を図3に示す。 ここで、側傾法に対する χ 軸回転を重畳すると、X線の侵入 深さは次式で表される¹⁰⁾。

ここで、 μ は線吸収係数である。試料面法線と回折面法線の なす角度 ϕ は、 γ と ω を用いて次式のようになる。

すなわち、式 (10) (11) を用いて、任意の ψ 角を与えること によって、侵入深さTが一定となるような ω , χ を決定する ことができる。これは秋庭らによって初めて提案された手法 であり、侵入深さ一定法と称されている¹¹⁾。

なお、
$$\psi = 0$$
における侵入深さは次式となる。

柳瀬ら¹⁰⁾は入射角を一定とする条件で、近似的に侵入深 さを一定とする方法を提案している。入射角を α とすると、 α と γ 、 ω は次式で関係する。

ただし、厳密には α が小さい場合に侵入深さがほぼ一定とな るものの、 α が大きくなるにつれてその誤差が大きくなるこ とに注意する必要がある。

侵入深さ一定の条件のもとで測定された応力 $\langle \sigma_x(T) \rangle$ は、 逆ラプラス変換することにより実残留応力分布 $\sigma(z)$ へと変 換することができる。

3 高エネルギーX線による 応力分布測定

3.1 sin² ψ法

前述のように疲労破壊や応力腐食割れに対しては、表面近 傍の引張残留応力の影響が極めて大きく、破壊強度の向上に は表面処理による圧縮残留応力の導入が有効となる。表面圧 縮残留応力の導入手法としては、従来からショットピーニン グが用いられており、近年では施工の簡易さや材料深部まで の圧縮層の形成を目的としたウォータージェットピーニング¹²⁾ やレーザピーニング¹³⁾が開発されている。これらの表面処 理に際しては、極表面での応力のみならず、その加工層であ る0.1 mm から1 mm 程度までの内部の応力分布が重要であ り、その高精度な測定が品質管理に際して求められる。

放射光では、高エネルギーのX線を得ることができるため、 材料内部の情報を得ることができる。図4には、炭素鋼に対

図3 X線経路

図4 侵入深さと $\sin^2\psi$ の関係

する侵入深さ $T \ge \sin^2 \psi$ の関係を示す。ここで、 $Cr-K_{\alpha}$ 線の 場合は並傾法で、その他は側傾法の侵入深さを示す。高エネ ルギーでは強い回折は低角にしか生じないため、広範囲の $\sin^2 \psi$ に対して測定するためには側傾法を用いなければなら ない。 $\sin^2 \psi = 0$ での侵入深さ T_0 は、 $Cr-K_{\alpha}$ 線で5.5 μ m で あるのに対して72 keV では最大186 μ m となり、約34 倍内 部まで侵入する。

図5は、表1に示した条件でショットピーニング処理した S45C材の残留応力分布である。表面を電解研磨によって逐 次研磨し、実験室X線装置を用いてCr-Kα線で測定した。 図中の白抜き印は測定値で、黒塗り印は表面除去の影響を補 正した後の値である。圧縮残留応力深さはMP材、HP材に ついて、それぞれ約130および約300 μmである。

同一の材料についてSPring-8のビームラインBL02B1に て測定した。図6(a)は72keVでFe321回折面について得ら れたMP材のsin²ψ線図の例である。sin²ψが0から0.5の範 囲では、おおよそ直線近似が可能である。これより得られる 残留応力を(b)に示す。ここで横軸は侵入深さTであり、To に対してプロットした。図中の〇印は、図5に示した逐次研 磨法の補正後のデータを式(7)で変換した後の値である。 さらに図中には、2つの回折面と3種類のエネルギーの組み 合わせで得られるデータをプロットした¹⁴⁾。高エネルギーで 非破壊的に測定した値は、逐次表面除去法に比較して、侵入 深さが浅いところではやや大きめに、深いところではやや低 めの圧縮応力となっているものの、おおよそ一致している。

表1	ショッ	トピーニ	ング条件
201	/ _ /		- / /

Specimen	Nominal shot	Air pressure	Coverage
	diameter (mm)	(MPa)	(%)
HP	0.8	0.3	100
MP	0.4	0.15	60 ~ 70

3.2 非線形解析

図6に示したように $\sin^2 \psi$ が0.5程度まででは、 $\sin^2 \psi$ 線図 は直線近似が可能であったが、より広範囲では直線で近似で きなくなる。図7はHP材のFe633,552,721回折より得ら れた $\sin^2 \psi$ 線図である。やはり $\sin^2 \psi$ が0.5程度までは直線 近似が可能であるが、それ以上になると非線形になり下に凸

の曲線になる。これは、sin² ψの増加とともに、侵入深さが 浅くなり、より表面の影響が強く表れることが原因である。 図中の実線は、逐次研磨法によって得られた残留応力分布を もとに、式(9)によって回折角を求めた結果であり、両者 は極めてよく一致することがわかる¹¹⁾。

実際の残留応力の分布形は、図5に示したように複雑な関 数によって表現されなければならないが、近似的には多項式 を用いることができる。図8は、簡単のため3次多項式を仮 定して、残留応力分布の逆問題解析を行った結果である¹¹⁾。 図中実線が計算結果である。(a)のMP材についてみると、 深さが50~80 μm程度の中間領域では実験結果の方が圧縮 残留応力がやや大きいが、表面および圧縮残留応力が消失す る深さは実験結果と計算結果はほぼ一致する。(b)のHP材 では、100 μm以下の表面近傍で若干実験値の方が圧縮に大 きいが、中間領域および残留応力が消失する深さはよく一致 する。ただし、ショットピーニング材のように表面の粗さが 大きい場合には、表面近傍の情報が重みつき平均として重畳 されるため、平滑表面としての計算結果に対して、誤差が大 きくなることに注意する必要がある。

図8 非線形解析による材料内部の応力分布

3.3 侵入深さ一定法

側傾法と並傾法とを重畳させることによって、侵入深さ一 定の条件での測定が可能である。図9にMP材で得られた $\sin^2 \phi$ 線図を示す¹¹⁾。これは、図7と同じ試料である。 T/T_0 が0.3、0.5および0.7について測定した。このとき、測定可 能な最大の $\sin^2 \phi$ は侵入深さによって制限され、それぞれ 0.88、0.67および0.5までとなる。図7では、 $\sin^2 \phi$ が0.5以 上では明らかに非線形性が認められるが、図9では T/T_0 が 0.3の場合、 $\sin^2 \phi$ が0.88まで $\sin^2 \phi$ 線図はほぼ直線で近似可 能であり、侵入深さ一定法の有効性が認められる。直線の勾 配は侵入深さが深くなるほど小さくなり、より内部までの重 み付き平均を測定していることがわかる。

図10に残留応力分布を示す。横軸は侵入深さである。図 中の丸印および三角印は、それぞれ321回折および633, 552,721回折で得られた結果である。図中の実線は逐次研 磨法で測定した残留応力分布を5次の多項式で近似し、重み つきの値として計算したものである。測定結果は実線にほぼ 一致していることがわかる。

4 微小領域の応力測定

材料の破壊は通常応力の集中部から生じ、そこには急激な 応力勾配が存在する。このような領域の測定では、照射域を なるべく小さくする必要があるが、回折X線強度が弱くなる ため、測定が困難になる。挿入光源を有する第3世代の放射 光では高輝度のX線が得られるため、このような測定に適す る。

図11は、微細粒鉄鋼(平均結晶粒径2 μm)の疲労き裂上 およびき裂前方の応力分布である¹⁵⁾。照射域寸法は100× 100 μmで、SPring-8のBL09XUで負荷及び除荷状態で

sin² ψ法によってその場測定した。図中の実線、破線は有限 要素法によって得られた解析結果であり、実験結果と良く一 致しており、急激な応力勾配がある場合でも高精度に応力分 布が求められることがわかる。また点線は、き裂閉口を考慮 した伝ぱシミュレーション結果より得られた解析値である が、やはり実験結果と良く一致しており、疲労き裂の解析に 有効な手法であることがわかる。同様の測定は、セラミック ス¹⁶⁾ や複合材料のき裂材にも適用されており、高エネルギ ーでの応力マッピングも試みられている^{3,17,18)}。

微小領域の応力測定では、結晶粒径に対して相対的にX線 照射面積が小さくなると照射域中の結晶数が少なくなり、回 折プロフィルが乱れたり、多結晶体としての等方性弾性論が 適用できなくなるため注意が必要である。

5 被覆膜・薄膜の応力測定

ガスタービンの高効率化や機械加工工具の長寿命化を目的 としたセラミックス被覆や、高性能半導体デバイスの開発に おいては、膜内の応力評価技術の確立が不可欠である。前者 では多層被膜になる場合も多く、非破壊的に内部の応力を評 価するために、放射光の高エネルギー^{19,20)}、高輝度^{21,22)}の 特徴が利用され、10 nmの極薄膜の応力測定も可能となって いる。なお、薄膜では繊維配向することが多いため測定に際 しては注意が必要である²³⁻²⁵⁾。

(6) おわりに

放射光では、実験室X線発生源からは得られないような、 高輝度、高指向性、高エネルギーのX線が得られる。本稿で 述べたように、応力評価の趨勢は、これらの特徴を利用した 高エネルギーによる内部測定と、微小(極薄)領域の測定に 大別できる。特に高エネルギーについては、中性子法以上の 高空間分解能を生かして、特定点の応力評価から2次元さら には3次元の広範囲のひずみ・応力マッピングが可能となっ てきている^{26,27)}。また、微小領域測定では、サブミクロン のビーム作製も可能となっており、極微小領域の応力評価に 期待がよせられている²⁸⁾。

現在、放射光を利用した応力評価に関しては、日本機械学 会材料力学部門の「放射光応力評価の実用化に関する研究会」 (A-TS03-20)を中心として、産業応用を目指した活動が続 けられている。また、国際的にはVAMAS TWA20の活動と して、放射光を利用した応力測定法の国際標準化の活動が始 まっている。世界でも屈指の放射光設備である SPring-8の 果たすべき役割は大きい。

564

参考文献

- 1)改著X線応力測定法,日本材料学会編,養賢堂, (1981)
- X線応力測定法標準--鉄鋼編-,日本材料学会,JSMS-SD-5-02,(2002)
- 3) M. Preuss, G. Rauchs, T.J.A. Doel, A. Steuwer, P. Bowen and P.J. Withers : Acta Mat., 51, (2003) 4, 1045.
- 4)田中啓介,秋庭義明:材料,52 (2003) 12,1435.
- 5) K. Tanaka, Y. Akiniwa and M. Hayashi : Material Science Research international, 8, (2002) 4, 165.
- 6) 秋庭義明, 田中啓介: 波紋, 13 (2003) 2, 112.
- 7) 英崇夫,藤原晴夫,西岡一水:材料,30 (1981),330, 274.
- 8) 吉岡靖夫, 佐々木敏彦, 倉本眞實: 非破壞検査, 34 (1985) 3, 52.
- 9) 鈴木賢治,田中啓介,坂井田喜久:材料,45 (1996)7, 759.
- 10) 柳瀬悦也,西尾光司,楠見之博,新井和夫,鈴木賢治, 秋庭義明,田中啓介:材料,51 (2002) 12,1429.
- 11)秋庭義明,田中啓介,鈴木賢治,柳瀬悦也,西尾光司, 楠見之博,尾角英毅,新井和夫:日本材料学会,第38 回X線材料強度に関するシンポジウム講演論文集, (2002),47.
- 12) 榎本邦夫,平野克彦,望月正人,黒沢幸一,斎藤英世, 林英策:材料,45 (1996) 7,734.
- 13)小畑稔,久保達也,佐野雄二,依田正樹,向井成彦, 嶋誠之,菅野眞紀:材料,49 (2000) 2, 193.
- 14) 柳瀬悦也,西尾光司,楠見之博,新井和夫,鈴木賢治, 秋庭義明,來海博央,田中啓介:材料,51 (2002) 7, 756.
- 15)秋庭義明,木村英彦,田中啓介:材料,53 (2004)7, 752.

- 16) 坂井田喜久: 材料, 53 (2004) 7, 758.
- 17) A.M. Korsunsky and K.E. James : Materials Scinece Forum, 404-407, (2002), 329.
- 18) H.F. Poulsen, T. Lorentzen, R. Feidenhans' 1, andY.- L. Liu : Met. Mat. Trans., 28A, (1997) 2, 237.
- 19) D. Dantz, C. Genzel, W. Reimers and K.-D. Liss : ICRS-6, (2001), 717.
- 20) 鈴木賢治,田中啓介,秋庭義明,川村昌志,西尾光司, 尾角英毅:材料,52 (2003) 7,756.
- 21) 土屋新,大鹿高歳,阿川智:日本機械学会分科会(P-SC327)成果報告書,(2003),26.
- 22) 英崇夫:日本機械学会調査研究分科会 (P-SC327) 成果 報告書, (2003), 31.
- 23) K. Tanaka, Y. Akiniwa, K. Inoue and H. Ohta : JSME International Journal, Ser. A, 41, (1998) 2, 290.
- 24) T. Hanabusa : Material Science Research international, 5, (2000) 2, 63.
- 25) T. Ito, K. Tanaka, Y. Akiniwa, T. Ishii and Y. Miki : JSME International Journal, Ser. A, 46, (2003) 1, 86.
- 26) P. J. Webster, W. P. Kang, D. J. Hughes and P. J. Withers : ICRS-6, (2001), 743.
- 27) P. J. Websters, D.J. Hughes, G. Mills and G.B.M.
 Vaughan : Materials Science Forum, 404-407, (2002), 767.
- 28) J. Matsui, Y. Tsusaka, K. Yokoyama, S. Takeda, M. Urakawa, Y. Kagoshima and S. Kimura : Materials Science Research Inter. Special Tech. Publ., 1, (2001), 374.

(2004年5月13日受付)