

航空機エンジン用耐熱合金の進展(1) 超合金の将来

Development of Heat-resistant Alloys for Aeroengine Applications (1) Future Design of Superalloys — From 4th Generation Single-Crystal Superalloys to 5th Generation—

> 防衛大学校 システム工学群 三浦信祐 Nobuhiro Miura 機械システム工学科 助手 三浦信祐 Nobuhiro Miura 防衛大学校 システム工学群 近藤義宏 Yoshihiro Kondo 機械システム工学科 教授

し はじめに

航空機ジェットエンジンはファン、圧縮機、燃焼機、高圧 タービン、低圧タービン等の各部から構成されている。高圧 タービン部で使用される動翼には、高温高応力の稼働条件に 曝されているため、高温クリープ特性に優れたNi基超合金 が用いられている。航空機の大型化および高速化に伴い、燃 焼ガスの高温化による航空機ジェットエンジンの高出力、高 効率化が求められ、タービン入口温度は上昇し続けている。 特に、最も過酷な稼働環境下に曝されている第一段タービン 動翼には、翼長方向(遠心力方向)に垂直な結晶粒界をなく した一方向凝固Ni基超合金や、結晶粒界が存在しない単結 晶Ni基超合金が、現在、多用されている。単結晶Ni基超合 金は、高温で転位の発生および消滅源として考えられている 結晶粒界¹⁻³⁾が存在しないため、普通鋳造Ni基超合金や一方 向凝固Ni基超合金に比べて、優れたクリープ抵抗を示す。 PWA1480、CMSX-2、RenéN4、SRR99に代表される第一 世代単結晶Ni基超合金、Reを約3%含有するPWA1484、 CMSX-4、RenéN5の第二世代単結晶Ni基超合金、Reを約 6%と高めたCMSX-10、RenéN6の第三世代単結晶Ni基超 合金が、最近ではReとRuを複合添加した第四世代単結晶 Ni基超合金も開発され、さらには、第四世代単結晶Ni基超 合金中のRuを増量した第五世代単結晶Ni 基超合金も報告さ れおり、これまで耐用温度の向上が図られてきている^{4,5)}。 しかし、第一段タービン動翼等に用いられる単結晶Ni基超 合金には、耐用温度の向上等、より厳しい要求が今後もなさ れることが予想される。この要求に応えるには、単結晶Ni 基超合金のクリープ変形に伴う組織変化を詳細に調査し、ク リープ変形機構を明らかにすることが必要であろう。すなわ ち、クリープ変形機構に基づいた合金開発が今後不可欠にな るものと考えられる。

ここでは、著者らの単結晶Ni基超合金における γ'相のラ

フト化に伴うクリープ特性の変化を調べたこれまでの研究か ら得られた結果を述べ、これに基づいた単結晶Ni基超合金 の高温クリープ変形機構について概説し、変形機構に基づい た合金開発の指針を述べることとする。なお、単結晶Ni基 超合金の合金開発⁶⁾および単結晶Ni基超合金以外の航空機 ジェットエンジン用耐熱合金⁵⁾については他を参照されたい。

全 単結晶Ni基超合金のクリープ

単結晶Ni基超合金が優れたクリープ強さを有するのは ①結晶粒界を含まないこと、および

②強化相である γ'相の体積率が60%を超えていること、 による。 γ 母相に規則的に析出した立方体状 γ'相は、高温 の引張応力下において互いに連結し、ラフト構造と呼ばれる 板状組織を形成する。このラフト構造は引張応力軸に対し、 垂直方向に成長するとされてきている⁶⁻⁹⁾。

ところで、 γ' 相がラフト構造を形成すると、転位の上昇 運動を抑制し、クリープ抵抗は増加すると考えられてき た^{10,11)}。事実、Pearsonらは単結晶Ni基合金に、 γ' 相のラ フト化を意図した応力時効を施して、クリープ試験を行い、 立方体状 γ' 相を有する未使用材とのクリープ抵抗を比較し た結果、応力時効材のクリープ速度は未使用材に比べ小さい ことを示した¹⁰⁾。一方、Nathalらは単結晶Ni基超合金、 NASAIR 100について、ラフト構造を形成した応力時効材の クリープ抵抗を、未使用材と比較した結果、Pearsonらの 報告¹⁰⁾とは逆に、応力時効材の最小クリープ速度は未使用 材に比べ大きくなることを明らかにしている¹²⁾。これらの ことから、 γ' 相のラフト化をクリープ強化因子とみなすこ とに統一的な見解はいまだ得られてはいない。

そこで、単結晶Ni基超合金のクリープ抵抗に及ぼすγ' 相のラフト化の影響を、著者らの最近の研究¹³⁻²²⁾に基づい て述べる。さらに、単結晶Ni基超合金の高温クリープにお

10

ける変形機構についても言及する。

2.1 クリープ抵抗に及ぼす応力時効の影響

単結晶Ni基超合金のクリープ抵抗に及ぼすラフト化の影響を検討するために、単結晶Ni基超合金、CMSX-4、に_γ'相のラフト化を意図した応力時効 (クリープ中断試験)を施し、ツバ付クリープ試験片に再加工後、再度、高応力クリー プ試験を行い、応力時効材の最小クリープ速度を未使用材での結果と比較した。なお、応力時効は平行部径8 mm、標点間距離50 mmの平滑クリープ試験片を用い、温度1273K、応力は1000h クリープ破断応力である160 MPaで行った。 高応力クリープ試験は平行部径6 mm、標点間距離30 mm のツバ付クリープ試験片を用い、温度1273K、応力 250 MPaにて行った。なお、引張方位は [001] である。

応力時効材の高応力クリープ試験における最小クリープ速 度と応力時効時間との関係を、未使用材および300h応力時 効材の(100)におけるSEM像と併せて図1に示す。なお、 応力軸は写真の上下方向である。立方体状γ'相は300hの応 力時効により、応力軸に対し垂直方向へ連結して、ラフト構 造を形成する。また、最小クリープ速度は時効時間の増加に 伴い単調に増加して、γ'相がラフト化した300h応力時効材 では、未使用材の約5倍大きな値を示す。このことから、γ' 相のラフト化はクリープ弱化として働くことが明らかであ る。

最小クリープ速度を示す時点で高応力クリープ試験を中断 した未使用材および300h応力時効材の (100) におけるTEM 像を図2に示す。未使用材および300h応力時効材ともに、 転位は γ / γ 相界面に多数認められ、その数は未使用材に 比べ300h応力時効材で多い。また、両試料とも、 γ 相中に 転位は認められるが、 γ / γ 相界面に比べるとその数は少 ない。しかし、 γ 相中には転位は認められず、転位による

図1 応力時効時間の増加に伴う最小クリープ速度の変化と未使用 材、300h応力時効材の(100)における SEM像

γ'相のcuttingは生じてはいない。したがって、両試料の高 応力クリープ試験におけるクリープ変形機構は変わらず、ま たクリープ変形はγ相で生じているものと考えられる。とこ ろで、図1のSEM像で示すように、300h応力時効材の応力 軸に垂直なγ相チャネル(横チャネル)の幅は、未使用材に 比べ広い。γ'相のラフト化は、横チャネルの幅を拡大させ、 γ相チャネル中の転位の拘束力を低下させて、転位の運動を 容易にするため、クリープ速度を増加させると予想される。

そこで、最小クリープ速度を示す時点で高応力クリープ試 験を中断した各応力時効材の横チャネル幅を測定し、最小ク リープ速度と横チャネルとの関係を求め、図3に示す。最小 クリープ速度は横チャネルの幅の増加に伴い大きくなり両者 は、一本の直線で整理できる。

高応力クリープ試験を、最小クリープ速度を示した時点で 停止した応力時効材を(111)に平行に切り出した試料につ いてTEM 観察を行い、横チャネル中の転位の曲率半径を求 め、転位の曲率半径と横チャネルの幅との関係を図4に示す。 横チャネルの幅の増加に伴い転位の曲率半径は単調に増加す る。したがって、ラフト化した単結晶Ni基超合金では、横 チャネルの幅が拡大して、γ相における転位の曲率半径が大 きくなり、転位の拘束力が低下したため、クリープ抵抗が低 下したものと推論される。

2.2 加速クリープ域におけるクリープ速度

耐熱鋼および耐熱合金の加速クリープ域では、割れの発生、 伝播や試料のネッキング等に起因した断面積減少による応力

図2 最小クリーブ速度を示す時点で高応カクリープ試験を中断した
 未使用材 (a) および 300h 応力時効材 (b) の (100) における
 TEM 像

増加、あるいは析出分散相の凝集粗大化といった組織変化に 基づいた材質劣化がクリープ速度の増加の主な原因と考えら れてきた。前節で用いた破断直前のクリープ試験片において も、割れは観察されなかったことから、割れの発生、伝播が 単結晶Ni基超合金の加速クリープ域の原因とは考え難い。 そこで、本節では加速クリープ域におけるクリープ速度の増 加が横チャネルの幅の拡大に起因するかを調べる。

単結晶Ni基超合金、CMSX-4、の1273K、100~ 400 MPaにおける加速クリープ域でのクリープ速度と横 チャネルの幅との関係を図5に示す。いずれの応力域でも横 チャネルの幅の増加に伴い加速クリープ域のクリープ速度は 増加し、両者の関係は、それぞれ一本の直線で整理できる。 したがって、加速クリープ域のクリープ速度の増加は横チャ ネルの幅の増加で説明できることが明らかである。

つぎに、加速クリープ域でも転位の曲率半径は横チャネル の幅に依存するか否かを確かめた。160 MPaのクリープを 停止した時点での横チャネルにおける転位の曲率半径を測定 し、図6に示す。横チャネルの幅と転位の曲率半径は比例関 係にある。以上の結果より、単結晶Ni基超合金、CMSX-4、 の加速クリープ域におけるクリープ速度の増加は横チャネル における転位の曲率半径の増加による転位の拘束力の低下で 説明される。

2.3 クリープ抵抗に及ぼすγ'相の微細化の影響

前節までで、横チャネルの幅の大小は直接的に転位の拘束 力に反映することを示した。これを確かめるため、本節では 熱処理により横チャネルの幅を狭くした試料を用意して、ク リープ速度との関係を検討した。 γ [']相の体積率一定のもと では、 γ [']相を微細化させると γ 相チャネルの幅は減少する。 そこで、一辺が約0.5 μ mであった標準材の立方体状 γ [']相を、 約0.3 μ mにまで小さくした微細化材について、2.1節で示し

図5 1273K、100~400MPaの加速クリープ域におけるクリープ速 度とγ相チャネルの幅との関係

図4 応力時効材の1273K、250MPaにおけるγ相チャネルの幅と転 位の曲率半径との関係

γ相チャネルの幅 (µm)

0.15

CMSX-4, 応力時効条件:1273K,160MPa 高応カクリープ試験条件:1273K,250MPa

0.40

0.50

0.20 0.25 0.30

図6 1273K、160MPaの加速クリープ域におけるγ相チャネルの幅 と転位の曲率半径との関係

図3 応力時効材の1273K、250MPaにおける最小クリープ速度とγ 相チャネルの幅との関係

0.50

0.40

0.30

0.25

0.20

0.15

0.10

転位の曲率半径 (nm)

た同様の実験を行い、クリープ抵抗に及ぼす応力時効の影響 を調べた。

微細化材および標準材の応力時効時間の増加に伴う最小ク リープ速度およびγ相チャネルの幅の変化を図7に示す。微 細化材の最小クリープ速度は標準材の約1/10である。応力 時効を施すと、微細化材の最小クリープ速度は大きくなるが、 その増加の割合は標準材に比べ大きく、700hで比較すると 微細化材の最小クリープ速度は標準材とほぼ同じ値を示す。 γ相チャネルの幅の変化もクリープ速度とよく対応してい た。すなわち、微細化材のγ相チャネルの初期の幅は標準材 の約2/3である。微細化材の応力時効に伴うγ相チャネルの 幅の増加は、標準材に比べ大きく、700hでは標準材とほぼ 同じ値を示す。

微細化材の最小クリープ速度と横チャネルの幅との関係 を、図5の結果と併せて図8に示す。なお、微細化材での結 果をオープンシンボルで表した。クリープ速度と横チャネル の幅との関係は、γ[']相の形状および大きさに依存せず一本 の直線で整理できる。このことから、横チャネルの幅とク リープ速度との関係は初期組織の違いによらず成立すること が明らかである。

2.4 単結晶Ni基超合金のクリープにおける変形機構

前節までに、単結晶Ni基超合金のクリープ抵抗は横チャ ネルの幅を通して、 γ 相中の転位の曲率半径に依存すること を明らかにした。また、1273K、100~400 MPaにおける CMSX-4の最小クリープ速度の応力指数、n値、は最小ク

図7 微細化材および標準材の応力時効時間の増加に伴う最小クリー プ速度とγ相チャネルの幅の変化

リープ速度を示す時点で組織変化が少ない応力域 (立方体状 γ '相を維持している高応力側あるいは γ '相がラフト化した 低応力側) で5以上である^{23,24)}ことから、クリープの律速過 程は転位の上昇運動であるものと推論されることを示唆して いる。

これらの結果に基づいて、γ相チャネル内での転位の運動 を模式的に図9に示す。転位はγ相チャネル中をすべり面に 沿って運動するが、γ相チャネルが狭いところでは、細線で 示すように転位の曲率半径を小さくして狭い領域をすべるの ではなく、実線で示すように上昇運動して、γ相チャネルの 狭い領域を避け、その後、再びすべり運動するものと考えら れる。

3 おわりに

前述したように、今後、単結晶Ni基超合金の合金開発を 行うには、クリープ変形機構を解明することが不可欠である。

図8 微細化材 (オープンシンボル) および標準材 (ソリッドシンボル) における最小クリープ速度とγ相チャネルの幅との関係

すべり面の法線方向から見た時の転位の動き

図9 単結晶Ni基超合金のγ相チャネル内における転位の運動の模式図

本稿では、これまで著者らが得た単結晶Ni基超合金につい ての実験結果に基づき、クリープ変形機構を提案した。この 結果、単結晶Ni基超合金のクリープ抵抗を改善するには、 γ相チャネルの幅を狭くすることが必要である。このために は、立方体状 γ'相の微細化あるいは γ'相の体積率のさらな る増加が有効な方策としてあげられる。しかし、立方体状 γ' 相の微細化あるいは体積率の増加により、横チャネルのみな らず、応力軸に平行方向の縦チャネルも狭くなるため、隣接 する γ' 相の連結が容易になり、図7で示したように、 γ' 相 のラフト化が促進され、横チャネルの拡大が短時間側で生じ ることになるであろう。したがって、γ'相のラフト化の抑 制が不可欠となる。このためには、γ'相のラフト構造の形 成機構を明らかにすることが急務である。γ'相のラフト構 造の形成機構については多くの研究²⁵⁻³⁰⁾が行われてはいる が、いまだ統一的な見解は得られていないのが現状である。 したがって、次世代単結晶Ni基超合金の合金開発は

 ① γ'相チャネルの狭窄化を意図した立方体状 γ'相の微細 化あるいは体積率のさらなる増加

② γ'相のラフト化の抑制

に基づいて行われるべきであろう。

参考文献

- F. Garofalo, W.F. Domis and F.von Gemmingen : Trans. AIME, 230 (1964), 1460.
- 2)近藤義宏,松尾 孝,篠田隆之,田中良平:鉄と鋼, 65 (1979), 896.
- 3)近藤義宏,松尾 孝,篠田隆之,田中良平:鉄と鋼, 67 (1981), 1805.
- 4) ふえらむ, 11 (2006), 61.
- 5) 藤村哲司:日本ガスタービン学会誌, 32 (2004), 174.
- 6) 原田広史:ふぇらむ,7(2002),153.
- 7) J.K. Tien and R.P. Gamble : Met. Trans. A, 3 (1972), 2157.
- M.V. Nathal and L.J. Ebert : Met. Trans. A, 16 (1985), 427.
- 9)近藤義宏,石橋浩一,行方二郎,大井成人,服部 博:熱処理,34 (1994),175.
- D.D. Pearson, F.D. Lemkey and B.H. Kear : Proc. of the 4th Int'l Symp. Superalloys 1980, (1980), 513.
- R.A. MacKay and L.J. Ebert : Met. Trans. A, 16 (1985), 1969.

- M.V. Nathal, R.A. MacKay and R.V. Miner : Met. Trans. A, 20 (1989), 133.
- 近藤義宏,北崎直弥,行方二郎,大井成人,服部
 博:鉄と鋼,80 (1994),568.
- 14) 星指吉見,近藤義宏,行方二郎,大井成人,服部博:材料とプロセス,8 (1995),733.
- Y. Kondo, N. Kitazaki, J. Namekata, N. Ohi and H. Hattori : Proc. of the 8th Int'l Symp. Superalloys 1996, (1996), 279.
- 16) 星指吉見,近藤義宏,行方二郎,大井成人,服部
 博:材料とプロセス,9(1996),495.
- 17) 三浦信祐, 近藤義宏, 松尾 孝: 鉄と鋼, 89 (2003), 1240.
- 三浦信祐,大可芳久,李 鎮承,近藤義宏:材料とプロセス,13 (2000),500.
- N. Miura, Y. Kondo and N. Ohi : Proc. of the 9th Int'l Symp. Superalloys 2000, (2000), 377.
- 20) 笠畑忠嗣,近藤義宏,行方二郎,大井成人,服部 博:材料とプロセス,8(1995),1460.
- 三浦信祐,山後彰弘,近藤義宏,行方二郎:材料とプロセス,11 (1998),474.
- 22) 近藤義宏: 材料とプロセス, 11 (1998), 473.
- 23) 北崎直弥,近藤義宏,行方二郎,大井成人,服部博:材料とプロセス,6 (1993), 1725.
- 24) Y. Kondo, N. Miura and T. Matsuo : Thermec' 2006 Int'l Conf. on Processing & Manufacturing of Advanced Materials, (2006), Submitted.
- 25) A. Pineau: Acta Metall., 24 (1976), 559.
- R.N. Nabarro : Metall. Mater. Trans. A, 27 (1996), 513.
- 27) M. Fahrmann, E. Fahrmann, O. Paris, P. Fratzl and T.M. Pollock : Proc. of the 8th Int'l Symp. on Superalloys 1996, (1996), 191.
- 28) J.K. Tien and S.M. Copley : Metall. Trans., 2 (1971), 215.
- 29) D. Mukherji, H. Gabrisch, W. Chen, H.J. Fecht and R.P. Wahi : Acta Mater., 45 (1997), 3143.
- 30) T. Ohashi, K. Hidaka and S. Imano : Acta Mater., 45 (1997), 1801.

(2006年4月4日受付)