耐熱鋼および耐熱合金開発の現状と将来展望-7

発電用大型ガスタービン動翼用Ni基超合金の開発(1)一方向凝固材か、単結晶材な

Development of Ni-Base Superalloys for Heavy-Duty Gas Turbine Buckets (1) Directionally Solidified Alloys or Single Crystal Alloys

吉岡洋明 Yomei Yoshioka (株) 東芝 電力・社会システム技術開発センター 金属材料開発部

し はじめに

近年の発電用ガスタービンの高温・高効率化および大容量 化の動きには目を見張るものがある。発電用大型ガスタービ ンでは、熱効率はLHVベースで39%を達成しており、出力 では150~330 MWの容量を実現している。また、ガスター ビンの廃ガスを利用し廃熱回収ボイラーにて起こした蒸気で 蒸気タービンを駆動するコンバインドサイクル発電では、 58~60%の熱効率を達成するまでになっている¹⁾。図1に燃 焼ガスの初段動翼入口温度とその耐熱温度の変遷を示す^{1,2)}。 ガスタービンの進歩に対して、高温化技術、冷却技術ととも に材料技術の果たした役割は大きいことが伺える。

ガスタービン材料には、新機種においても可能な限り従来 用いられてきた実績のある材料が選定される。しかし、従来 材で設計が成り立たなくなった場合は、高温化で先行する航 空機エンジンで実績のある材料が選定される。ただし、実機 適用に際しては発電用ガスタービンとの使用環境・条件の違 いを考慮し長期間の検証試験が行われ、場合によってはその 結果に基づく改良が行われる²⁾。

図1 発電用大型ガスタービンの高温化の推移

ここでは、ガスタービンの高温化を図る上においてのキー 技術である動翼用Ni基超合金の材料技術について、方向性 凝固材を中心にその現状と将来展望を述べる。

ガスタービン動翼に用いられている超合金は、強化析出相 として母材に整合に析出する金属間化合物 y'相 [Ni₃(Al,Ti)] が利用されるようになって以来、Ni 基合金を中心に合金設 計技術、製造技術の進歩と相俟って大きな進歩を遂げてきた。 航空機エンジンでは、 y' 相形成元素を多く添加しCr 含有量 を減少させクリープ強度を向上させる施策が採られてきた が、発電用大型ガスタービンでは、燃料中のS含有率が航空 機用に比較し高いことから、耐高温腐食性を考慮しつつ強度 の向上が図られてきた。このためCr を12~22.5%程度添加 することにより耐食性を付与するとともに、W、Ta等の耐 火金属を添加し固溶強化を図り強度を維持している。この代 表的な合金として、最も広く用いられているのが*IN-738LC*、 あるいは *René 80*の改良材 *GTD-111*、国産合金の*MGA 1400であ*る。これらの翼は高温強度に優れることから鍛造 が難しく、また、近年図2に示したような複雑な冷却構造が

図2 1300℃級ガスタービン初段動翼(DS翼, SC翼)の外観および 内部冷却構造

9

要求されることから精密鋳造で作られている。

この鋳造技術も航空機エンジンでは、1960年代末から 1970年代にかけて一方向凝固法を用いた柱状晶 (DS) 翼が、 また、1980年代には単結晶 (SC) 翼が実用化されている。 ここでは、結晶粒界をなくし粒界強化元素の添加を控えるこ とにより合金の融点降下を抑え、 y'相を完全固溶させる溶 体化熱処理を可能とし高温強度改善を図った第1世代SC合 金、これにReを3%添加し改善を図った第2世代SC合金、 また、5~6%までReを増量しさらに改善を図った第3世代 SC合金が、開発され実用化されている。図3にSC合金の開 発の推移を示す。

ところで、このReを中心とした耐火金属の多量添加は、 TCP (Topologically Closed Pack)相の析出^{3,4)}、あるいは コーティング層と基材の間に形成される拡散層下に γ '相中 にP相と γ 相がセル状に析出したコロニー (SRZ: Secondary Reaction Zone)の形成⁵⁾を誘発し、逆に強度低下を きたした。このため、添加量の調整および新たな元素の模索 が行われており、現在Ruに代表される白金属元素を中心に 次世代単結晶合金の開発競争が行われている。ここでは(独) 物質・材料研究機構がその先導的な役割を果たしている⁶⁾。

発電用ガスタービンへのDS/SC 翼の適用は、航空機エン ジンから各々約10年の遅れで実用化されてきている。定格 出力で長期の運転が求められる発電用ガスタービンでは、航 空機エンジン用の転用合金としてはReの添加を3%までに 抑えた第2世代SC合金CMSX-4あるいはRené N5が、また、 発電用ガスタービン専用に開発した合金としては、耐食性を 考慮しCr含有量を12%程度とした第1世代SC合金CMSX-11^{7,8)}、あるいはPWA 1483^{7,9)}が用いられている。

また、一連のSC合金開発の流れに加え、近年発電用では、 機器の大型化に伴い、SC合金に粒界強化元素を添加し高強 度化を図ったDS合金あるいは普通鋳造 (CC)合金の開発が、 SC 翼の大型化技術の開発と平行して行われている。SC合金 *René N4* に粒界強化元素を添加したDS合金*GTD-444^{7,10)}*、同 じくSC 合金*PWA1483*を改良したDS合金*PWA1437、*CC 合金*PWA1432¹¹⁾がそれに該当する。*

図3 航空機用および発電用SC合金の開発の流れ

3 発電用大型ガスタービンの 開発動向と材料仕様

ガスタービンの高温化・大容量化の流れは、1970年代に 1100℃級ガスタービンで冷却技術が初めて導入されて以後、 その冷却技術と材料技術の向上により、1980年代には 1300℃級、1990年代から2000年にかけては1400~1500℃ 級のガスタービンが実用化されるに至っている。図4に大型 ガスタービンメーカ各社の最新鋭機であるGE-東芝製H 形、三菱重工業製G2形、川重-Alstom製GT26形、富士-Siemens 製3A形の各ガスタービンの写真を¹²⁻¹⁵⁾、表1およ び2にそのガスタービンの仕様とそこに用いられている高温 部品用材料およびその材料組成^{6,7,16)}を、また、各々の機種 の代表部品である動・静翼の写真を図5に示す^{12,16,17,18)}。こ こでは従来機種である1300℃級ガスタービンの仕様も合わ せて示したが、最新鋭機種では、G2形ガスタービンを除い て各社とも動翼の1段あるいは2段動翼にSC合金を、表面 にセラミックスの遮熱コーティングを施し用いている。発電 用大型ガスタービンにおいても航空機エンジン同様、SC合 金は高温材料としての定地位を確保した感がある。

表1に示したように最新鋭機の動翼には、上流側1・2段 落の比較的サイズの小さな翼はSC合金が、それより下流側 3段以降のサイズの大きな翼にはDS合金あるいはCC合金が 用いられている。SC翼は、依然大型化に課題を残している が、設計上のニーズは高まっているものと思われる。ここで は、設計面と特性面から両合金の比較を試みる。

図4 最新鋭の発電用大型ガスタービン

Г		GE−日立−東芝			GE一東芝				菱重工業		富:	±—Siemer	าร	川重一Alstom			
型式		FA形 : F7FA/F9FA			H形 : F7H			G形 : M501G/701G			3A形 :	V84.3A/	√94.3A	GT24/GT26			
出力(MW) (60Hz/50Hz)		171.7/255.6			400(コンハ・イント・サイクル)			254/334.2				180/266		187.7/280.9			
燃	焼ガス温度	初段動翼入口:約1328℃			初段動翼入口:約1430℃			初段静翼入口:1500℃			1400°C超(ISO定義)約1,230°C			SO定義:HP約1,250°C/LP約1,300°C			
		基材	基材 冷却方式 コーティング		基材	冷却方式	コーティング	基材	冷却方式コーティング		基材	冷却方式	コーティング	基材	冷却方式	コーティンク゛	
17	1段	GTD-111 (DS)	空冷	твс	René N5 (SC)	蒸気冷却	TBC	MGA1400 (DS)	空冷	TBC	PWA1483 (SC)	空冷	твс	CMSX-4 (SC)	空冷	TBC	
1	2段	GTD-111	空冷	MCrAlY	GTD-111 (DS)	蒸気冷却	TBC	MGA1400 (DS)	空冷	TBC	PWA1483 (SC)	空冷	TBC	CMSX-4 (SC)	空冷	TBC	
レン動	3段	GTD-111	無冷却	クロマイス゛	GTD-444 (DS)	空冷	MCrAIY	MGA1400	空冷	MCrAlY	René 80	空冷	MCrAIY	CM-247LC (DS)	空冷	MCrAIY	
到翼	4段	-	-	-	GTD-444 (DS)	無冷却	MCrAlY	MGA1400	無冷却	MCrAIY	René 80	無冷却	クロマイス゛	MarM-247	空冷	MCrAIY	
	5段	-	-	-	-	-	-	-	-	-	-	-	-	MarM-247	無冷却	クロマイス	
	CC:普通鋳造, DS:柱状晶, SC:単結晶												単結晶				

表1 代表的な最新鋭大型ガスタービンの仕様緒言

表2 代表的な発電用ガスタービン動翼用材料および航空機エンジン用SC合金の化学組成

十十半日 友	鋳造	化学成分 (mass %)													
1/1 个十分	条件	Cr	Ni	Co	Mo	W	Ti	Al	Та	C	Zr	В	Hf	Re	その他
IN-738LC	CC	16.0	Bal.	8.5	1.7	2.6	3.4	3.4	1.7	0.11	0.05	0.010	-	-	0.9Nb
IN-939	CC	22.4	Bal.	19.0	-	2.0	3.7	1.9	1.4	0.15	0.10	0.010	-	-	1.0Nb
René 80	CC	14.0	Bal.	9.5	4.0	4.0	5.0	3.0	-	0.17	0.05	0.015	-	-	
MAR-M 247	CC	8.4	Bal.	10.0	0.7	10.0	1.0	5.5	3.0	0.15	0.05	0.015	1.5	-	
CM-247LC	DS	8.1	Bal.	9.2	0.5	9.5	0.7	5.6	3.2	0.07	0.02	0.015	1.4	-	
GTD-111	CC/DS	14.0	Bal.	9.5	1.5	3.8	4.9	3.0	2.8	0.10	-	-	-	-	
MGA 1400	CC/DS	14.0	Bal.	10.0	1.5	4.3	2.7	4.0	4.7	0.08	-	-	-	-	
GTD-444	DS	9.8	Bal.	7.5	1.5	6.0	3.5	4.2	-	C	2+Zr+B=0.1		-	-	0.5Nb
PWA1432 PWA1437	CC DS	12.2	Bal.	9.0	1.9	3.8	4.2	3.6	5.0	0.11	<0.02	0.013	-	_	
PWA1480		10.0	Bal.	5.0	-	4.0	1.5	5.0	12.0	-	-	-	-	-	
CMSX-2	第1世代	8.0	Bal.	4.6	0.6	8.0	1.0	5.6	9.0	-	-	-	-	-	
PWA 1483	SC	12.2	Bal.	9.0	1.9	3.8	4.2	3.6	5.0	0.07	-	-	-	-	
TMS-26		5.6	Bal.	8.2	1.9	10.9	-	5.1	7.7	-	-	-	-	-	
TMS-82+	答っまた	4.9	Bal.	7.8	1.9	8.7	0.5	5.3	6.0	-	Ι		0.10	2.4	
CMSX-4	第2世代 SC	6.5	Bal.	9.0	0.6	6.0	1.0	5.6	6.5	-	1	1	0.10	3.0	
René N5		7.0	Bal.	7.5	1.5	5.0	-	6.2	6.5	0.05	I	0.004	0.15	3.0	
René N6	第3世代	4.2	Bal.	12.5	1.4	6.0		5.8	7.2	0.05	Ι	0.004	0.15	5.4	0.001Y
TMS-75	SC	3.0	Bal.	12.0	2.0	6.0	-	6.0	6.0	-	1	-	0.10	5.0	
MX-4	第4世代	2.0	Bal.	16.5	2.0	6.0	-	5.6	8.3	0.03	١	-	0.15	6.0	3.0Ru
TMS-138	SC	2.8	Bal.	5.8	2.9	5.8	-	5.8	5.6	-	-	-	0.10	4.9	1.9Ru
TMS-162	第5世代 SC	2.9	Bal.	5.8	3.9	5.8	-	5.8	5.6	-	1	1	0.10	4.9	6.0Ru

 GE H#S
 Alstom GT26#S
 Siemens 3A#S
 MHI G2#S

GE H#3 SC René N5

SC CMSX-4 SC PWA1483 DS MGA1400

図5 各社最新鋭機に用いられている初段動翼

図6 1300℃級ガスタービン空気冷却翼と1500℃級蒸気冷却翼の 冷却設計の概念図

蒸気を用いることにより、フィルムクーリングを用いること なく基材表面温度を1300℃級並に保つよう設計されている が、その分基材部の温度差ΔT₁₅₀₀は大きく、大きな熱応力 が発生する。このため、H形ガスタービンでは、FA形と同

4.1 設計上の要求特性

図6に1,300℃級のFA形ガスタービンで採用されている空 気冷却翼と1,500℃級のH形ガスタービンで採用されている 回収式蒸気冷却翼を例に冷却設計の概念を示す。翼前縁部よ り冷却空気を噴き出し、翼の内外面から冷却するフィルム クーリングを採用した空気冷却翼においても、翼基材の内外 面温度差ΔT₁₃₀₀により定格運転時翼表面に圧縮の熱応力が 発生する。1500℃級では空気より約1.5倍冷却特性に優れた 等以上の熱疲労寿命を得るためDS合金*GTD-111*材の約3倍 の熱疲労寿命を有するSC合金*René N5*を用いている¹⁷⁾。な お、空気冷却翼においてもその冷却性能を向上させることに より発生する熱応力は大きくなっている。また、基材温度も 上がる傾向にあることから3A形、あるいはGT24/26にお いてもSC合金が用いられている。

図7に1300℃級の15 MW ガスタービンで500時間商用運 転を行ったCMSX-2製SC 翼表層部の組織観察結果を示す。 定格運転時表面に生じた等方的な熱応力により、翼面に平行 に成長した γ[']相のラフト組織が観察されている^{19'}。このよ うに熱応力は翼表面上で等方的に働くことから、翼長方向だ けでなくその垂直方向対しても従来以上に高い強度が求めら れており、結晶粒界を有しないSC合金が必要とされるとこ ろとなっている。

4.2 DS合金とSC合金の特性比較

DS翼は、クリープき裂の起点となる翼長方向 (DS方向& 遠心力方向) に垂直な結晶粒界がなく、また、翼長方向がヤ ング率の小さな [001] 方向であることから、この方向のク リープ強度だけでなく熱疲労強度にも優れている。SC合金 では、さらにこの翼長方向の結晶粒界もなくすことで横方向 の強度改善も図っている。また、粒界強化元素であるC、B、 Zr、Hf等の添加量を抑えることは、これらの偏析により生 じる局所溶融の溶融温度を上げる。このため、高温での溶体 化処理による主強化析出物 γ' 相の完全固溶・再析出を可能 とし、 γ' 相の形状最適化と高温強度の大幅な改善を図るこ とができる。また、疲労き裂の起点となるMC炭化物をなく すことで疲労強度の大幅な改善も図れている。この他、結晶 粒界をなくすことで添加できる合金元素の自由度も増すこと から、強度特性に加えて耐高温腐食・酸化特性の改善も図る ことが可能である²⁰⁾。

図8~10に、CC合金*Mar-M247*、DS合金*CM-247LC*、 SC合金*CMSX-2*のDS方向からの角度、結晶方位の、ク

図7 1300℃級15MWガスタービン初段SC翼(材料: *CMSX-2*) 表層下に観察された表面に平行に形成したγ'相ラフト組織

リープ強度、ヤング率、低サイクル疲労強度に及ぼす影響を 示す。SC合金のクリープ強度は図8に見られる通り結晶方 位依存性が認められている。しかし、DS合金とは異なりき 裂の起点となる結晶粒界を有しないことから、いずれの方位

図8 CC合金 *Mar-M247*、DS合金 *CM-247LC*、SC 合金 *CMSX-2*の クリープ特性

図9 CC合金 *Mar-M247*、DS 合金 *CM-247LC*、SC 合金 *CMSX-2の* ヤング率の結晶方位、温度依存性

図10 CC合金 *Mar-M247*、DS合金 *CM-247LC*、SC合金 *CMSX-2の* 低サイクル疲労特性

においてもDS合金より優れた強度を示している。これに対 してDS合金は、DS方向に対し90°方向では長時間側では CC合金とほぼ同等の強度になっており、DS化のメリット はほとんどなくなっている。

DS合金、SC合金のヤング率も、クリープ試験の結果と同 様、DS方向からの角度あるいは結晶方位依存性が認められ ている。DS方向と [001] 方向、45°方向と [111] 方向はほ ぼ同じヤング率を示し、前者は後者の約1/2、また、CC合 金とDS合金の90°方向はほぼ同じ値を示し、両者の中間の 値を示していた。

ひずみ制御の低サイクル疲労強度はこのヤング率の影響を 強く受ける。DS合金、SC合金とも、[001]方向では耐力は 高くヤング率は小さいことから、CC合金より優れた疲労強 度を有している。しかし、DS合金の場合、結晶粒界を横切 る45°あるいは90°方向では結晶粒界がき裂の起点として働 くことからCC合金とほぼ同等の強度となっている。なお、 これに対してSC合金は結晶粒界を有しないことから通常表 面下の粗大析出物、デンドライト境界、ポロシティーを起点 としており、その低下量はDSに較べると小さなものとなっ ている²⁰⁾。

この他、SC合金は、DS合金あるいはCC合金に比較して 高温酸化・腐食性にも優れることが報告されている^{20,21)}。

単結晶合金の発電用大型ガスタービン への適用に際しての課題

以上に述べたように、大型の発電用ガスタービンにおいて も航空機用と同様、動翼材料としてSC合金が用いられるよ うになって来ている。しかし、SC 翼の大型化は製造技術上 依然課題を残しており、また、実機運用上の問題も、航空機 エンジンの実績で十分とは言いがたい。ここでは、航空機用 との違いを取り上げ、今後解決すべき課題の抽出を行う。

まず、航空機エンジンとの大きな違いの一つに製品サイズ が挙げられる¹⁰⁾。H形ガスタービンのSC 翼は、大型航空機 エンジンであるGE 90のSC 翼と比較した場合、翼長は約4 倍、重量差は約18 kg とその差は大きい。鋳造時、鋳型は 1475℃を超える溶融金属を一方向凝固させる間保持しなけ ればならない。このため、翼の肉厚寸法を設計の許容範囲で ある±20%内に収めることは非常に難しい。また、製品サ イズが大きくなるほど熱伝導に制約を受けることから固液界 面で大きな温度勾配をつけることは難しくなり、小傾角粒界、 異結晶粒、フレッケル等の欠陥が生じやすくなる。製造コス トはその歩留まりに大きく依存するといわれている。現状 SC 翼の歩留まりは約30%、DS 翼は80%以上と報告されて おり、その差は依然大きいといえる。ここでは、鋳型材ある いは中子材の耐熱性の改善、凝固解析等の導入等による鋳造 方案の最適化と鋳造性を考慮した翼形状の変更、化学組成の 調整等の対策を講じ、その歩留まりを改善する努力がなされ ている¹⁰⁾。この他、新たな鋳造法の検討もなされており、 現状のブリッジマン法に対して、冷却媒体としてSnあるい はA1等の液体金属を用いるLMC法(Liquid Metal Cooling)^{22,23)}あるいは鋳型壁をガス冷却するGCC法(Gas Cooling Casting)²⁴⁾等の研究がなされている。SC翼が広く普及 するためには更なる製造技術面のブレークスルーが求められ る。

航空機エンジンとのもう一つの違いは、運転パターンの違 いによる損傷モードの違いが挙げられる。図11に航空機エ ンジンと発電用ガスタービンの代表的な運転パターンを示 す。航空機エンジンは、最高温度での運転は離陸時に限られ、 巡航運転時はその8割程度の温度で運行している。その運行 時間もせいぜい10時間程度であり多起動型の運転となって いる。これに対して、発電用ガスタービンは、週末停止ある いは年末点検での年一回の停止以外は常時定格負荷で運転さ れるといったミドルロードあるいはベースロードでの運転 が、近年特にその発電効率の向上とともに標準的に行われる ようになってきている。航空機用では翼の運転時間はせいぜ い25,000時間、ピーク温度では1,000時間程度であるのに対 し、発電用では約105時間と大きく異なる25)。このため航空 機エンジンの運転実績から発電用のSC翼の劣化・損傷形 態、延いては翼寿命の支配因子を予測することは難しい。発 電用ガスタービンでのSC 翼の運転実績が出るのはこれから であるが、この実績を積み重ねる中で、その劣化・損傷形態 を明らかにし、保守あるいは材料の改良設計に反映していく 必要があると考える。

(6) おわりに

SC合金は、高温特性に優れることから今後ガスタービン の高温化の流れの中でますますその重要度は増していくと考 えられる。その一方で、大型化に関しては、前述したように まだ完全に課題を解決したとは言いがたい。大型化に伴うデ

図11 航空機エンジンと発電用ガスタービンの運転パターンの違い

13

ンドライト組織の粗大化、小傾角粒界の対策として添加され た粒界強化元素、あるいは2次方位の熱疲労特性への影響、 この他、SC翼の異方性が翼の曲げ、ねじり振動に及ぼす影 響も、熱膨張係数の結晶方位依存性が小さい分ヤング率の影 響が無視できないことから懸念されるところである。運転実 績を基に運用上の問題点をクリアにしていく必要があると思 われる。なお、現時点でのSC翼の適用は、各社の製造可能 なサイズの翼に限定されている感がある。今後、運転実績を 基に、また、製造技術面からのブレークスルーも加味され、 DS翼との使い分けがなされていくものと考えられる。

参考文献

- 1) 2003 GTW Handbook, Gas Turbine World Vol. 23
- 2) P. Schilke : GE reference Library GER-3569G (2004), 1.
- 3) R. Darolia, D.F. Lahrman and R.D. Field : Proc. the 6th Symposium on Superalloys, (1988), 255-264.
- 4) T. Hino, Y. Yoshioka, K. Nagata, H. Kashiwaya, T. Kobayashi, Y. Koizumi, H. Harada and T. Yamagata : Proc. 6th Liège conference, Part.II, (1988), 1129-1137.
- W.S. Walston, J.C. Schaeffer and W.H. Murphy : Proc. the 8th Symposium on Superalloys, (1996), 9-18.
- H. Harada : Proc. Int. Gas Turbine Congress 2003 Tokyo KS-2, (2003)
- 7) R. Viswanathan and ST. Scheirer : Proc. Creep 7, JSME, Tsukuba, June 3-8, (2001)
- G.L. Erickson : Proceeding of Superalloys 1996, (1996), 45-52.
- 9) D.M. Shah and A. Cetel : Proc. Superalloys 2000, ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLeen, S.L. Olson and J.J. Schirra, TMS, (2000), 295-304.
- 10) J.C. Schaeffer : Proc. Power-gen, (2005), 1-11.
- A.D. Cetel and V. Seetharaman : Proc. ASME Turbo Expo 2005, Power for Land, Sea and Air, GT2005-68882, June 6-9, Reno-Tahoe, Nevada, USA, (2005), 1-15.

- 12) 吉岡洋明:金属, 75 (2005) 7, 661-668.
- 13) http://www.powergeneration.siemens.com/en/ v943a/index.cfm, (2006/08/23)
- 14) 三菱重工カタログ
- 15) http://www.khi.co.jp/products/gendou/sangyou/ kawasaki/kawasaki_01.html, (2006/08/23)
- 16) 吉岡洋明,土井裕之,武田淳一郎,難波浩一,岡田郁
 生,武浩司,伊藤健之:日本ガスタービン学会誌,32
 (2004) 3, 4-47.
- 17) R.K. Matta, G.D. Mercer and R.S. Tuthill : GE reference Library GER-3935b (2000), 1.
- 18) Howmet catalogue.
- 19) 吉岡洋明,斎藤大蔵,福山佳孝,伊藤勝康:日本ガス タービン学会定期講演会講演論文集,30(2002/09), 233-238.
- 20) D.N. Duhl : In the Superalloys II, ed. by C.T. Sims, N.S. Stoloff, W.C. Hagel, John Wiley and Sons, New York, 189-214.
- 21) M. Gell, D.N. Duhl, D.K. Gupta and K.D. Scheffler : J. Metals, 39 (1987) 11, 11-15.
- 22) R.F. Singer : Mat. For Advanced Power Engrg. 2 (1994), 1707.
- 23) A.J. Elliott, G.B. Karney, M.F.X. Gigliotti, TM Pollock : Proc. Superalloys 2004, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S.Walston, TMS, (2004), 421-430.
- M. Konter, E. Kats, N. Hofmann : Proc. Superalloys 2000, ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLeen, S.L. Olson and J.J. Schirra, TMS, (2000), 189-200.
- 25) B.B. Seth : Proc. Superalloys 2000, ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLeen, S.L. Olson and J.J. Schirra, TMS, (2000), 3-14.

本論文掲載の商品の名称は、それぞれ各社の商標として使用 している場合があります。

(2006年8月4日受付)