護図計算ソフトウェア Pandatの紹介と研究者個人によるそのデータベースの操

Introduction to Multi-component Phase Diagram Calculation Software Pandat and the Usage of Thermodynamic Database on a Researcher

橋本 CREST-JST Kiyoshi Hashimoto

独立行政法人物質・材料研究機構

(1) はじめに

2元系状態図集を見る時の検索キーワードとして「元素名 Aと元素名B」で調べることが多い。3元系状態図集を見る 時は、等温断面図の場合は「元素名A、B、C、と温度」、液 相面図の場合は「元素名A、B、C」、縦断面状態図の場合は 「元素名A、B、C、とその濃度条件 | で調べる。さらに相分 離が生じるかどうか状態図集を用いて調べることはないだろ うか。そこでソフトウェアの操作方法が上記と同じ操作なら 使いやすい。相分離が生じるかどうかをソフトウェアが自動 検出してくれると便利である。このような [使いやすさ]を 追求しているソフトウェアがPandat (パンダと呼ぶ)である。 本稿では、多元系合金状態図計算ソフトウェアPandat(以 下、本ソフトウェア)を状態図計算ソフトウェアの一例とし て具体的に解説する。

門講座

状態図 (相変態編)―自信を持って使うための熱力学的基礎-8

(2) ソフトウェアの紹介

2.1 開発初期

1998年CALPHAD国際会議にて、Y. Austin Chang教授 によるソフトウェア名Pandaに関する発表「Thermodynamic Calculation」があった。この時は「2元系状態図を計算す る|ソフトウェアを開発したとの説明があり、すでに相分離 を自動検出し、計算初期点の設定を必要としない計算手法が 用いられていた。

2000年仙台で開催されたAPDIC国際会議にて、Dr. Shuanglin Chen による発表 [Multi-component Phase Diagram Calculation Software Pandat」があった。この2年間 で「多元系に対応させた」「操作性を良くした」との説明があ った。

その後に本ソフトウェアを利用し始め、開発者に機能拡張 を依頼したので内容を2つ紹介する。

平衡計算SOLGASMIXプログラムと平衡計算結果値を比 較できるように、ガス相・ガス種を取り扱えるような機能追 加を依頼すると、圧力値を画面入力できるように改良され た。

液相面図の計算結果を画面表示させた際、液相線の谷がど ちらの方向に向かっているのか判断できない。2001年当時、 画面上マウスクリック操作は「初晶 | の名前を表示するだけ であった。そこでマウスクリックした部分の温度(液相線温 度) も表示するような機能追加を依頼すると、翌日にはこの 機能ができ上がっていた。

2.2 開発コンセプト

本ソフトウェアは米国 Wisconsin - Madison University のY.A. Chang 教授らのグループにより1980年代から開発が 始められたソフトウェアである。ソフトウェアの開発は米国 Wisconsin州にあるCompuTherm LLC社で精力的に続け られている。本ソフトウェアはパソコン (MS-Windows) 上 で稼動するC言語で開発された多元系合金状態図計算ソフト ウェアである¹⁻⁴⁾。

本ソフトウェアの特長は以下の4点である。第1に、使い やすさを最優先とし、計算指示はWindowsボタンのクリッ クと値入力だけで行えるように考慮されていること。第2に、 自動的に相分離を検出すること。相分離を指示により認識す るのではなく、熱力学データベース中の自由エネルギー曲線 (曲面)からソフトウェアが判断する。最安定平衡点を求め ているので、利用者の平衡に関する推測 (gu ess) が計算に 入らないようにしている。第3に、通常必要な計算指示は温 度と各元素組成値のみで、結果はグラフ表示まで自動的に行 うこと。そのため相律(自由度)に従い、1気圧、系全体の モル数が1にセットされ、金属合金系の状態図計算を考慮し ている。図1は合金状態図計算のための操作の流れを示す図 である。例えばFe-Cr2元系状態図を計算する場合でも、特

別な計算指示は必要なく、計算範囲の全ての相境界(液相線、 固相線、γループ領域、σ相、BCC2相分離)を網羅してく れる。したがって計算初期点の指定が不要である。通常デー タベース中に含まれる全ての相を計算対象にするが、利用者 が相を選択する機能は備えられている。第4に、取り扱える 元素数、相数、副格子数に制限がないこと。多元系合金の組 成値を画面に毎度毎度入力するのは大変であるため、計算条 件をテキストファイルに保存し、このファイルを再利用する 機能が備えられている。さらに計算結果数値は自動的にテキ ストファイルに書き込まれ、表計算ソフトウェアにてこの数 値ファイルを再利用できる。

2.3 ソフトウェアの機能

本ソフトウェアの計算機能を表1に示す。計算モデルは、 正則溶体モデル、Hillert & Jarl磁気変態モデル⁵⁾、副格子モ デル、規則一不規則変態モデル等に対応しており、モデル式 及び熱力学パラメータの記述方法については本講座の3(7 月号)⁶⁾と4(8月号)⁷⁾、山下による解説⁸⁾を参照いただきた い。本ソフトウェアで取り扱っている熱力学データベースを 表2に示す。硫黄を副格子モデルで記述したデータベース⁹⁾ も整備されている。

3 熱力学データベースの操作

3.1 操作例1(液相と固相を含む2元系状態図)

液相と固相の相互作用パラメータの大小関係を用いて典型 的な各種2元系状態図を計算できる。本稿では計算に必要な 熱力学データベース (テキストファイル)の例を紹介する。

仮想的なA元素とB元素を考える。A元素の融点を962℃、 B元素の融点を1085℃とし、液相の名前をLIQUID、固相 の名前をALPHAとし、固相の結晶構造は同じとする。正則 溶体モデルとA、Bの融解エントロピーをR(気体定数)とす るリチャーズ則を用いると、固相状態を基準にした場合の自

表1 本ソフトウェアの計算機能

1 点平衡計算		
ライン平衡計算		
組成-自由エネルギー曲線		
組成を固定した時の温度変化による相平衡計算		
温度を固定した時の濃度変化による相平衡計算		
2元系状態図計算		
3元系·多元系等温断面図計算		
3元系・多元系縦断面図計算		
液相面図計算		
Scheil モデルによる凝固計算		
表面張力・粘性計算(ADAMIS/Pandat)		

表2 熱力学データベースの一覧

適用分野	含まれる元素数		開発
銅合金用	11 元素	MDTCu	日本
Fe-S 合金用	8 元素	MDTS	日本
鉛フリーはんだ合金用	11 元素	ADAMIS	日本
鉄合金用	18 元素	PanFe	米国
アルミ合金用	20 元素	PanAl	米国
マグネシウム合金用	17 元素	PanMg	米国
ニッケル基合金用	17 元素	PanNi	米国
チタン合金用	18 元素	PanTi	米国
金属ガラス合金用	6 元素	PanZr	米国

由エネルギーは表3のように表現できる。液相の自由エネル ギー値が融点を境に固相の自由エネルギー値より低くなるよ うに式を設定している。そして液相の相互作用パラメータ値 を+10000 (J/mol) (①行参照)とし、固相の相互作用パラ メータ値を+25000 (J/mol) (④行参照)とする。図2は仮 想的なA-B2元系状態図計算結果である。典型的な共晶型 になる。

次に仮想的なB元素とC元素を考える。C元素の融点を 1455℃とし、固相の結晶構造はB元素と同じとする。液相 の相互作用パラメータ値を+0(J/mol)(②行参照)とし、 固相の相互作用パラメータ値を+0(J/mol)(⑤行参照)と する。図3は仮想的なB-C2元系状態図計算結果である。典 型的な全率固溶型になる。

さらにA元素とC元素の組合せを考える。A元素の融点と C元素の融点は上記と同じとし、固相の結晶構造は同じとす る。液相の相互作用パラメータ値を+35000 (J/mol)(③行 参照)とし、固相の相互作用パラメータ値を+35000 (J/mol)(⑥行参照)とする。図4は仮想的なA-C2元系状 態図計算結果である。典型的な2液相領域型になる。このよ 表3 熱力学データベースの例(固相基準)

Element A ALPHA 10 2 Element B ALPHA 40 5 Element C ALPHA 70 8	30 30 ! 50 60 ! 50 90 !			
Function RR 298.15 8 Function ZERO 298.15 (.314; 600).0; 60	00 N! 00 N!		
Phase LIQUID % 1 1.0 Constituent LIQUID : A, B, C	! :!			
Parameter G(LIQUID, A;0)	298.15	1235.15*RR-RR*T;	6000 N!	
Parameter G(LIQUID, B;0)	298.15	1358.15*RR-RR*T;	6000 N!	
Parameter G(LIQUID, C;0)	298.15	1728.15*RR-RR*T;	6000 N!	
Parameter G(LIQUID, A,B;0)	298.15	+10000;	6000 N!	\$ ①
Parameter G(LIQUID, B,C;0)	298.15	ZERO;	6000 N!	\$ ②
Parameter G(LIQUID, A,C;0)	298.15	+35000;	6000 N!	\$3
Phase ALPHA % 1 1.0 Constituent ALPHA :A, B, C	!]: ! 208 15	0 : 6000 N!		
Parameter G(ALPHA B:0)	290.10	0; 6000 N!		
Parameter G(ALPHA C:0)	298.15	0; 6000 N!		
Parameter G(ALPHA A B:0)	298.15	+25000: 6000 N!	\$ ④	
Parameter G(ALPHA B C:0)	298 15	ZERO: 6000 N	\$ 5	
Parameter G(ALPHA A C:0)	298.15	+35000: 6000 N!	\$ 6	
	200.10		ΨŸ	

うに簡単なファイル記述を準備するだけで典型的な状態図を 計算できるようになる。

図2と図4においては固相2相領域が存在する。図中では $\alpha + \alpha$ と表記したが、他文献では $\alpha + \alpha$ 'もしくは α #1 + α #2と記されている場合がある。図4においてはL+L領 域が存在する。同様にL+L'もしくはL1+L2と記されてい る場合がある。本ソフトウェアはこの2相領域を自動的に検 出し確実に状態図を計算する。さて、A、B、Cは仮想的な 元素として取り扱ってきたが、それぞれAg元素、Cu元素、 Ni元素に対応し、ALPHA相はFCC_A1相に対応させている。 表3では固相(ALPHA相)を基準にして自由エネルギーを記 述しているため、各元素のALPHA相の自由エネルギー値は ゼロ値としている。相境界を求める計算ならこの記述方法で 十分である。一方、実用材料の合金データベースは多くの場 合、各元素はその298.15K、1気圧における状態を基準 (Standard Element Reference 基準と呼ぶ)にして自由エネ ルギー熱力学パラメータが評価されている¹⁰⁾。具体的には Ag元素の場合はGHSERAG関数(この意味はG-H_{SER}(Ag))、 Cu元素の場合はGHSERCU関数、Ni元素の場合は GHSERNI関数を利用し、表A-1のように記述される。この 記述方法を用いれば自由エネルギーの大きさが実用材料用の データベースとほぼ同じ結果が得られ、汎用性が増すことに なる。駆動力などの計算を定量的に行えるメリットがある。 なお実用材料のデータベースにおいては、相互作用パラメー タには温度依存性や濃度依存性を持たせ、3元系相互作用パ ラメータも評価して値が決められている。

3.2 操作例2(化合物相を含む状態図)

化合物が存在する場合を考える¹¹⁾。仮想的なA元素、B元 素、そしてAB (1:1の比率の)化合物を考える。A元素の 融点を1000K、B元素の融点を500K、A、Bの融解エントロ ピーをR (気体定数)とする。AとBは固溶しないとする。 AB化合物の生成エネルギーを $\triangle G_{AB} = G_{AB} - G_A - G_B$ =-25000J/molとした場合の熱力学データベース (テキス トファイル)を表A-2に示す。互いに固溶しないので ALPHAとBETAの2つの固相を定義した。図5は化合物相 を含むA-B2元系状態図である。

3.3 操作例3(磁気変態を考慮した状態図)

鉄鋼材料では磁気変態による自由エネルギー変化を考慮し なければならない¹²⁾。Fe元素と仮想的なA元素を用いて、 磁気変態にもとづく2相分離線を考える。Fe元素のキュリ ー温度を1043K、A元素のキュリー温度を43Kとし、A元素

添加によるキュリー温度の濃度に対する変化率を△T =-1000とする場合を考え、常磁性における固相の相互作 用パラメータ値を+8000 (J/mol)と仮定した場合の熱力学 データベース (テキストファイル)を表A-3に示す。磁気に 関するパラメータとして、パラメータTCはキュリー温度、 パラメータBMAGNはボーア磁子の平均磁気モーメントで ある。図6は磁気変態を考慮したFe-A2元系状態図である。 破線はキュリー温度の濃度による変化を示す。点線は常磁性 状態での相分離線を示し、実線は磁気変態を考慮した場合の 相分離線を示す。2相分離線が拡大することが確認できる。 磁気変態を伴う2相分離線の特長的なことは通常見られるよ うな対称形の2相分離ではなく、鉄リッチ側に角を持った非 対称な形状を有していることである。図6においては BCC+BCC (実線)やBCC_para +BCC_para (点線)にな

る領域が存在する。本ソフトウェアはこの領域を自動的に検 出し状態図を計算する。

3.4 操作例4(鉄鋼材料への応用)

図7は、熱力学データベースPanFeを用いたFe-13 mass%Cr-C3元系縦断面図である。図8は同じくFe-Cr-C3元系1000℃の等温断面図である。本ソフトウェアは 計算初期点の指定を必要とせず、計算テクニックも必要とせ ず、多元系平衡状態図を計算する。このような複雑な状態図 でも相領域の同定はマウスクリックで済み簡単である。

図7 Fe-13mass%Cr-C3元系縦断面図

Fe-Mn-C3元系において、置換型元素 Mnの拡散が侵入 型元素のそれに比べて著しく遅い場合、置換型元素の拡散が 起こらないと想定した非平衡状態のパラ平衡 (paraequilibrium)を考える。オーステナイト (γ相) とフェライト (α相) に対して、条件式は化学ポテンシャルμを用いて

$$\mu_{C}^{a} = \mu_{C}^{\gamma}$$

$$\mu_{Mn}^{\gamma} - \mu_{Mn}^{a} + k(\mu_{Fe}^{\gamma} - \mu_{Fe}^{a}) = 0$$

となり¹³⁾、完全平衡状態(すべての成分元素の化学ポテンシャルが2相間で等しい)とは異なる。ここで*k*は溶質原子(immobile solute)と溶媒原子の原子比である。

本ソフトウェアは平衡計算を主目的としているため、パラ 平衡計算機能は用意されていない。このために計算エンジン 部分のみを独立させ、C言語ユーザプログラムから関数呼び 出しの形で利用できるモジュールPanEngin (パンエンジン と呼ぶ)が別途用意されている。このモジュール中にパラ平 衡を計算する関数が用意される。関数に合金組成と温度を入 力すると、炭素の化学ポテンシャル値、α相中の炭素濃度値 とγ相中の炭素濃度値などが返される。既存の熱力学データ ベースをそのまま利用して計算可能である。

4 おわりに

本ソフトウェアを用いて基礎的な2元系状態図から実用材 料の各種状態図まで計算できることを紹介した。また、熱力 学データベースの基礎的な操作方法を紹介した。

今後はソフトウェアに関する計算テクニックが不要になる と考えられる。しかしその一方で、熱力学データベースの精 度を上げることが必要になるであろう。熱力学データベース は、フェーズフィールド法による組織形成シミュレーション とリンクしてさらに活用されていくことになるであろうか ら、計算にどの熱力学データベースを利用したかがますます 重要になる。熱力学データベースが広く世界的にさらに活用 されていくことを期待する。

本稿をまとめるにあたり貴重な資料を提供いただいた九州 工業大学、長谷部光弘教授に感謝いたします。

Appendix

本ソフトウェアでは、相の名前に小文字が使用できる。 関数を引用する際、関数名の最後に#を付けてもよい。 相互作用パラメータ値(式)を意図的にゼロ値にする場合 は、関数ZEROを引用する。 表A-1 熱力学データベースの例(SER基準)

Element A ALPHA 107.8 Element B ALPHA 63.5 Element C ALPHA 58.6	7 5745 42.55 ! 46 5004 33.15 ! 9 4787 29.7955 !	\$ Ag \$ Cu \$ Ni		
Function ZERO 298.1 Function GHSERAG 298.15	5 0.0; 6000 N!			
-7209.512 +118.202013*T -23.8463314*T*LN(T)001790585*T**2 -3.98587E-07*T**3 -12011*T**(-1) ;				
-15095.252 +190.2664 3000 N !	04*T -33.472*T*LN(T)	+1.412E+29*T**(-9);		
Function GHSERCU 298.15				
-7770.458 +130.48523 +1.29223E-07*T**3 +	5*T · 24.112392*T*LN(′ 52478*T**(-1);	T)00265684*T**2		
-13542.026 +183.8038 3200 N !	28*T -31.38*T*LN(T) +	-3.642E+29*T**(-9);		
Function GHSERNI 298.15 -5179.159+117.854*7 1728 Y	-22.096*T*LN(T)0048	3407*T**2;		
-27840.655+279.135* 3000 N!	T43.1*T*LN(T)+1.127	54E+31*T**(-9);		
Phase LIQUID % 1 1.0 Constituent LIQUID :A, B, C	1 ::!			
Parameter G(LIQUID, A;0) Parameter G(LIQUID, B;0)	298.15 10269-8.31 298.15 11292-8.31	4*T +GHSERAG; 6000 N! 4*T +GHSERCU; 6000 N!		
Parameter G(LIQUID, C;0)	$298.15 14368 \cdot 8.31$	4*T +GHSERNI; 6000 N!		
Parameter G(LIQUID, A,B;0)	298.15 +10000; 208.15 +10000;	6000 N! 6000 N!		
Parameter G(LIQUID, A,C;0)	298.15 + 10000; 298.15 + 35000;	6000 N!		
Phase ALPHA % 1 1.0 Constituent ALPHA :A, B, G	! \$ This is H C: !	FCC_A1		
Parameter G(ALPHA, A;0) Parameter G(ALPHA, B;0)	298.15 +GHSERAG 298.15 +GHSERCU	5 6000 N! \$ Lattice stability 5 6000 N!		
Parameter G(ALPHA, C;0) Parameter G(ALPHA A B;0)	298.15 +GHSERNI; 298.15 +25000;	6000 N! 6000 N!		
Parameter G(ALPHA, B,C;0) Parameter G(ALPHA, A,C;0)	$\begin{array}{r} 298.15 \\ 298.15 \\ +35000; \\ \end{array}$	6000 N! $\qquad \alpha + \alpha'$ 6000 N!		

表A-2 化合物相を含むデータベースの例(図5に対応)

Element A ALPHA 10 20 30 ! Element B BETA 40 50 60 !			
Function RR 298.15 8.314; 6000 N! Function ZERO 298.15 0.0; 6000 N!			
Phase LIQUID % 1 1.0 ! Constituent LIQUID :A, B: !			
Parameter G(LIQUID,A;0) 298.15 +1000*RR·RR*T; 6000 N! Parameter G(LIQUID,B;0) 298.15 +500*RR·RR*T; 6000 N! Parameter G(LIQUID,A,B;0) 298.15 ZERO; 6000 N!			
Phase ALPHA % 1 1.0 ! Constituent ALPHA :A: ! Parameter G(ALPHA,A:0) 298.15 ZERO; 6000 N!			
Phase BETA % 1 1.0 ! Constituent BETA :B: ! Parameter G(BETA,B:0) 298.15 ZERO; 6000 N!			
Phase A1B1 % 2 1 1 ! Constituent A1B1 :A:B: ! Parameter G(A1B1,A:B:0) 298.15 -25000 ; 6000 N!			

表A-3 磁気変態を考慮したデータベースの例(図6に対応)

Element A BCC 10 Element FE BCC 55.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Function ZERO 298.15 0;	3000 N !		
Type_Definition & GES A_P_D BCC Magnetic -1.0 0.4 ! Phase BCC %& 1 1.0 ! Constituent BCC :A,FE: !			
Parameter G(BCC,A;0)	298.15 ZERO;	3000 N !	
Parameter TC(BCC,A;0)	298.15 43 ;	3000 N !	
Parameter G(BCC,FE;0)	298.15 ZERO;	3000 N !	
Parameter TC(BCC,FE;0)	298.15 1043 ;	3000 N !	
Parameter BMAGN(BCC,FE;0)	298.15 2.22;	3000 N !	
Parameter G(BCC,A,FE;0)	298.15 +8000 ;	3000 N !	
Phase BCC_para % 1 1.0 ! Constituent BCC_para :A,FE: ! Parameter G(BCC_para,A;0) 298.15 ZERO; 3000 N ! Parameter G(BCC_para,FE;0) 298.15 ZERO; 3000 N ! Parameter G(BCC_para,A,FE;0) 298.15 Herois 3000 N !			

参考文献

- 1) S.L. Chen, K.C. Chou and Y.A. Chang : CALPHAD 17 (1993), 237-250, 287-302.
- 2) S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates and R. Schmid-Fetzer : J. Phase Equilibria 22 (2001), 373-378.
- 3) S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y.
 Yan, F.-Y. Xie, R. Schmid-Fetzer and W.A. Oates :
 CALPHAD 26 (2002), 175-188.
- 4) Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer and W.A. Oates : Prog. Mater. Sci. 49 (2004), 313-345.
- 5) M. Hillert and M. Jarl : CALPHAD, 2 (1978), 227-238.

- 6) 大谷博司,長谷部光弘:ふえらむ,11 (2006),457-463.
- 7) 阿部太一:ふぇらむ, 11 (2006), 520-527.
- 8) 山下孝子:ふぇらむ,8(2003),316-321.
- 9) 及川勝成,光井啓,石田清仁:材料とプロセス CAMP-ISIJ, 18 (2005), 1276-1279.
- 10) A.T. Dinsdale : CALPHAD, 15 (1991), 317-425.
- 11) 西澤泰二:ミクロ組織の熱力学,日本金属学会 (2005), 92.
- 12) 西澤泰二,長谷部光弘:鉄と鋼,67 (1981),1887-1898.
- 13) J.B. Gilmour, G.R. Purdy and J.S. Kirkaldy : Metall. Trans., 3 (1972), 1455-1464.

(2006年8月1日受付)