特集記事 • 4 地球環境に貢献する鉄鋼製品

スチールコードの組織制御と高強度化

Microstructure Control and Strengthening of Steel Tire Cord

檀井廠 新日本製鐵(株) 鉄鋼研究所 主幹研究員 Toshimi Tarui

(1) はじめに

量産鋼種の中で最も強度が高い鉄鋼材料は、高炭素のパー ライト鋼を伸線加工によって強化した高炭素鋼線である。高 炭素鋼線は、ばね、PC鋼線、橋梁用鋼線、ワイヤロープ、 タイヤ補強用スチールコード、ソーワイヤなど広範囲に使用 され、工業的にも重要な地位を占めている。高炭素鋼線は古 い素材ではあるが、近年の高強度化の進展は目覚ましく、鉄 鋼材料の極限強度の追求という意味では最先端を行く素材で ある。本稿では、タイヤ補強用スチールコードの高強度化の 背景、パーライト鋼の強度、伸線加工による組織と強度変化、 高強度化の現状および今後の課題について述べる。

こ2 スチールコードの高強度化の背景

スチールコードは、高炭素鋼線の中で最も強度が高い材料 であり、タイヤ、ベルトコンベア、ホースなどのゴム製品を 補強するために使用されている。従来、タイヤ補強用コード としてナイロン、ポリエステルなどの有機繊維が広く使用さ れてきた。ラジアルタイヤの登場以来、スチールコードの使 用が進み、乗用車用タイヤではベルトに、トラック・バス用 タイヤではベルトとカーカスに用いられている。この主な理 由は、スチールラジアル構造がタイヤの耐久性、燃費、安全 性などの点で優れているからである。スチールは有機繊維に 比べ高い引張・圧縮剛性を有しており、剛性の高いスチール コードはタイヤゴムの無駄な動きを抑制し、タイヤの耐摩耗 性、転がり抵抗の低下による燃費向上などの大きな効果を発 揮する1)。環境問題から自動車の大幅な燃費向上が課題とな っているが、タイヤ側からのアプローチは、スチールコード の高強度化によるタイヤの軽量化である。1970年代のスチ ールコードの強度は2800 MPa程度であったが、鋼中の介在 物制御技術、中心偏析制御技術に支えられて1980年代には

3400 MPaにまで増加し、現在では4000 MPaに到達するス チールコードが実用化されている。更に4500~5000 MPa スチールコードの実現を目指して開発が進められている。

パテンティング処理による 組織変化とパーライト鋼の強度

スチールコードは、微細パーライト組織に調整冷却した 0.7~0.9%Cの § 5.5 mm ピアノ線材をパテンティング処理 撚り線加工を行い最終製品となる。パテンティング処理とは、 950℃程度に加熱した後、550~600℃の温度域に急冷・保 定し、等温パーライト変態を行う処理である。パテンティン グによって、フェライト (以下 α) とセメンタイト (以下 θ) からなる均一で微細なパーライト組織となり、強度の増加と 強加工にも耐えられる伸線加工性を付与することができる。

パーライト組織は、ラメラー α が同じ結晶方位を有するブ ロック、ラメラーの方向が同一のコロニー、

θの層間隔であ るラメラー間隔から構成されている²⁾。パテンティング処理 条件や合金元素によってこれらの組織因子が変化し、パテン ティング材や伸線加工後のスチールコードの機械的性質に大 きな影響を与える。この中で、パーライト鋼の強度を支配す る組織因子はラメラー間隔である。高炭素鋼線材の強度はパ テンティング後で既に1200~1500 MPaにも達する。これ はパテンティングによってラメラー間隔が100nmオーダー に微細化されているためである。強度のラメラー間隔依存性 として、Hall-Petchの関係が成り立つと報告している例が 多いが、定数項が負の値になるためラメラー間隔の-1乗に 比例するOrowan型の式も提案されている。ラメラー間隔は パテンティング時のパーライト変態温度の低温下に伴い細粒 化し、また、合金元素の影響も著しく受ける。実用的な元素 ではCr が最もラメラー間隔を微細化させる効果があり、Mn のようなオーステナイト (以下 γ)フォーマーの元素は共析 温度を下げるため、ラメラー間隔を粗大化させる作用がある。 パーライト鋼の強度は細粒強化以外にC含有量によって大き く変化し、更に、固溶強化、析出強化などの各種強化機構の 利用も可能である。図1³⁾に0.8%Cをベースとした場合の パテンティング材強度増加量に及ぼす合金元素の影響を示 す。Cは θ 分率の増加(分散強化)、Siは α の固溶強化、Vは α の析出強化、Crはラメラー間隔の微細強化により、パテ ンティング材の強度を増加させる。このような各種強化機構 は高炭素鋼線の用途に応じて使い分けられているが、スチー ルコードでは製造コスト、パテンティング処理性などの観点 から高C化とCr添加によるラメラー微細強化が指向されて いる。

4 伸線加工による組織変化と強度

図2⁴⁾に伸線加工による加工硬化曲線を示す。パーライト 鋼の加工硬化は他の組織に比べ非常に大きいことが特徴であ る。パーライト鋼の加工硬化特性は未だに解明されていない が、ラメラー間隔、転位密度など種々の組織変化に起因して いると考えられている。以下に伸線加工によるスチールコー ドの組織変化に関して、これまでの考え方を整理するととも に、現在、活発に研究されている θ の分解挙動なども交えて 最近の研究成果について述べる。

4.1 ラメラー間隔、転位密度、セメンタイトの変化

パテンティング材ではラメラーの方向がランダムである が、真歪で約1の伸線加工を行うと結晶回転が起きて、ほぼ 伸線方向に配向したラメラー組織となる。ラメラー間隔は線 径の減少に比例して細かくなり、パテンティング後のラメラ ー間隔が100 nm であっても、真歪で4 程度の伸線加工を行

うと10nmのオーダーに達する。平均的なラメラー間隔は伸線加工歪の増加に伴って細粒化するが、コロニー内のラメラ ーの方向によって伸線過程でのコロニーの変形が不均一なた めに、加工歪の増加に伴ってラメラー間隔の分布幅が拡大す ることが知られている⁵⁾。

また、伸線加工によって、α中には微細なセル組織が形成 され、微細ラメラー組織がセルサイズの微細化に寄与してい ると考えられている。図3⁶⁾にラメラー間隔が約10nmに強 加工した鋼線のTEM組織を示す。α中にはラメラー方向に 沿った周期的なコントラストの変化があり、その幅はラメラ ー間隔とほぼ同じで約10nmである。また、αの回折スポッ トがコントラストの異なる領域で若干変化していることか

図3 スチールコードのTEM組織

ら、このコントラスト変化は結晶方位がわずかに異なるセル 組織に起因して現れたものと考えられている。圧延によって 強加工したパーライト鋼の隣接する α 間の方位差は最大で約 10° であり、方位差を担う幾何学的に必要なGN 転位密度は、 ラメラー間隔が20 nmの場合、 10^{16} /m²のオーダーになるこ とが報告されている⁷⁾。図4⁸⁾にラメラー間隔と転位密度の 関係を示す。強加工によりラメラー間隔が10 nmに到達した 鋼線では、隣接する α 間およびセル間の方位差を3°と少な 目に見積もった場合でも、 $\alpha \neq \theta$ 界面およびセル境界のGN 転位密度は、トータルで5× 10^{16} /m²のオーダーになる。セ ルはGN 転位以外に統計的に蓄積されたSS 転位から構成さ れているため、SS 転位密度も考慮すると強加工した鋼線で は 10^{17} /m²オーダーの高密度転位が存在していると考えられ ている。

硬く脆いと考えられているθは、その厚みが薄ければ塑性 変形することが知られている。伸線加工では、θ厚みが約 10 nm以下であれば十分に塑性変形する⁵⁾。この条件は、通 常のパテンティング処理で実現できている。図5⁸⁾に強加工

図5 スチールコードの高分解能TEM組織

した鋼線の格子像を示す。ラメラー間隔は10nmのオーダー に細粒化し、θは塑性変形により厚みが数nmレベルになっ ていることがわかる。また、θはマクロ的には分断すること なく、ラメラー構造が保たれている。θはすべり変形すると 報告されているが、詳細な変形メカニズムは未だに不明な点 が多い。このメカニズムとして、パテンティング処理後に単 結晶であったθが伸線加工によってナノオーダーの多結晶に なることから⁹⁾、ナノ結晶化によってθの塑性変形が可能に なることが提案されている。また、強加工されたθの一部は、 局所的な歪の高い部分でアモルファス化していることが報告 されている¹⁰⁾。一方、図5に示したマイクロディフラクショ ンから明らかなように強加工された鋼線でもθは結晶構造を 維持しているとの報告例もある。θの変形メカニズムとあわ せて、伸線加工に伴うθの組織変化の解明が望まれている。

4.2 時効による組織変化とセメンタイト分解

伸線加工では加工発熱によって鋼線温度が数百℃に達する ことから、加工中に静的・動的歪時効が起きていると考えら れており11,12)、機械的性質は伸線加工歪が同じであっても 伸線速度などの加工条件によって変化することが知られてい る。鋼線の歪時効は3段階で変化することが提案されてい る¹¹⁾。第1段階は約150℃以下の温度で起き、α格子間に固 溶した微量Cが転位を固着 (Cottrell 雰囲気) する現象であ るが、機械的性質の変化は小さい。第2段階は200~250℃ で起き、θの一部が分解し転位がCで固着される結果、強度 の増加と延性の著しい低下が起きる。比抵抗測定の結果では、 0.01 mass%程度のCが分解していると推定されている。第 3段階は第2段階に引続いてより高温で起こり、時効硬化が 低減し延性は回復する。しかし、最近の研究によれば、従来 予想されていた以上に θ が分解し、伸線加工歪によってはC 固溶限を大幅に上回るCがα中に存在していること¹³⁾、強加 工を行った高炭素鋼線では*θ*がほぼ完全に分解することなど が明らかになってきた¹⁴⁾。これに伴って、*θ*の分解機構、 α 中のCの存在状態に関して新たな幾つかの提案がなされて いる。しかし、議論のベースとなる定量的な θ 分解量と伸線 加工歪の関係、伸線条件の影響などの基礎データは少ないの が実状である。

図6⁶⁰に乾式伸線したSWRS82B(以下82B)および湿式伸線したSWRS92A(以下92A)の伸線加工歪に伴う α 中のC 濃度変化をアトムプローブ電界イオン顕微鏡(AP)によって 測定した結果を示す。伸線の比較的初期から θ 分解が進行し、 α 中には固溶限以上のCが存在することがわかる。最大のC 濃度は加工歪の増加に伴って高くなり、加工歪が高い鋼線で は1at.%を越える領域がある。同一の加工歪で比較すると、 乾式伸線の82Bは湿式伸線の92AよりC濃度が高く、伸線中

にθ分解が起こりやすいことを示している。また、同一の加 工歪でも測定領域によってC濃度はかなりばらついており、 θ分解が不均一に起きていることがわかる。θ分解は、ラメ ラー間隔が細かい領域の方が進行しやすいと考えられてい る。図7⁶⁾に82Bの時効処理による降伏強度変化とα中のC 濃度変化を示す。時効温度250℃で降伏強度が1950 MPaに 増加し、400℃を越えると伸線加工まま材よりも強度が低下 する。また、伸線加工直後ですでにα中には0.5at.%前後の Cが存在するが、著しい時効硬化が起きる250℃時効(歪時 効の第2段階) では従来から報告されているようにθ分解が 進行し、α中のC濃度は1at.%を越えることがわかる。この 結果は、伸線時の加工発熱による鋼線の温度上昇によって θ の分解量が変化することを示唆している。また、α中のC量 の増加に伴って降伏強度が増加していることから、鋼線の歪 時効硬化の要因は θ 分解に起因した C の転位固着強化である ことを示している。

従来、伸線加工中に生じる θ 分解は転位とCの弾性相互作

用エネルギーの観点から議論されてきたが、伸線加工によっ るために界面自由エネルギーが増加し、Gibbs-Thomson効 果によってθ分解が起きるメカニズムも提案されている¹⁵⁾。 θ 分解機構と密接に関係する α 中のCの存在状態は、前者が 転位に偏析、後者が過飽和固溶の考え方になる。これ以外に、 Cがα/θ界面に偏析、α中に微細炭化物として析出する考 え方が提案され、最近では、真歪が1.5以上でCの過飽和固 溶によってαの結晶構造が体心立方晶から体心正方晶に変態 しているとの報告¹⁶⁾もある。鋼線のθ分解機構を明確にす るためには、Cの存在状態と強度・延性の機械的性質との関 係も同時に議論する必要がある。例えば、歪時効の第2段階 では

θ分解の進行によって降伏強度の著しい増加が起きる が、Cが転位に偏析しているのであれば歪時効の強化機構は 転位固着強化であり、過飽和に固溶しているのであればCの **固溶強化となる。**θ分解機構から実験結果を考えると、加工 歪が同一であっても乾式伸線と湿式伸線とでは θ 分解量が異 なる結果 (図6) や時効温度による θ 分解量の違い (図7) を Gibbs - Thomson効果だけで説明することは困難と考えられ る。Cの存在状態として界面偏析説は、これまでの3D-AP によるC分析の結果¹³⁾ではα内部にもCが明瞭に存在してい ることが明らかにされており、 α / θ 界面にのみCが偏析し ている事実は確認されていない。従って、従来から提案され ているようにθ分解したCの大部分は転位に偏析している考 え方が妥当であると考えられている。更に、

θ分解が起きる ための条件は、Cの偏析サイトとなる高密度転位とCの拡散 速度を高める加工発熱と考えられている⁶⁾。

4.3 伸線加工による機械的性質の変化

図8¹⁷⁾に湿式伸線での加工硬化特性に及ぼすC量および Cr, Mn, V添加の影響を示す。C量の増加に伴い粒界 α量 が低下しパーライト分率が増加するためパテンティング材強 度が高くなるが、加工硬化量もC量が増加するほど大きくな る。また、ラメラー間隔を微細化させる効果のあるCr鋼の 加工硬化率は特に高歪域で大きくなり、加工歪が同じであっ ても高強度の鋼線が得られる。これに対して、析出強化元素 のV及びMnは加工硬化率に大きな影響を与えない。αを固 溶強化させるSiも加工硬化率に影響を与えないことが知ら れている。これまで、高炭素鋼線の加工硬化機構は、伸線加 工歪に伴って変化するラメラー間隔、セルサイズ、転位密度 の観点から議論されてきた⁴⁾。また、C量が変化すると強度 が著しく異なるため、 α と θ 強度の複合則的な取り扱いもさ れているが、C量とラメラー間隔が異なるパーライト鋼の加 工硬化挙動を説明するまでに至っていない。最近報告された 中性子線回折による高炭素鋼線の引張変形中の格子面歪の変

化によれば、a相が3400 MPaまで弾性変形していることが わかっている¹⁸⁾。極細鋼線の強度は5000 MPaまで進展して いるが、 θ の強度が5000 MPa程度とされていることから、 伸線による加工強化の主役はaであると考えられている。一 方、強加工した鋼線の微視的な組織解明も進み、前述したよ うに伸線加工歪の増加に伴い θ のナノ結晶化や θ の部分的な アモルファス化が起きていることから、鋼線強度に対して、 θ の細粒強化や組織変化の影響を取り入れる必要性も提案さ れている。また、伸線加工中に静的・動的歪時効が起きてい ることを考慮すれば、 θ 分解によるCの転位固着強化も重要 な強化機構と考えられている。スチールコードの高強度化を 更に進展させるためには、 θ の基本特性の解明とあわせて強 化機構の解明が望まれている。

高強度スチールコードを実用化するためには延性の確保が 必要である。通常、延性は、ねじり試験でのねじり回数とそ の破断形態で評価されている。延性が高い鋼線は均一にねじ られ、ねじり回数が高く、また、最終的に鋼線の直角方向に 破断する。延性が低下した鋼線では、ねじり変形の極初期に デラミネーションと呼ばれている伸線方向に沿った縦割れが 発生し、ねじり回数が極端に低下する。デラミネーションの 発生がスチールコードの高強度化を阻害する最大の要因とな っている。これまで、デラミネーションの発生機構に関して 幾つかのモデルが提案されているが¹⁹⁾、線径が太いほどデ ラミネーションが発生しやすい線径効果²⁰⁾を説明するまで に至っていない。一方、鋼線の乾式伸線中に生じる歪時効と 機械的性質におよぼす影響に関して詳細な検討が行われてお り、延性低下の原因は伸線中に生じる θ 分解によるCの歪時 効であると報告されている¹²⁾。その後、θ分解とデラミネ ーションの発生の関係および発生機構について検討がなされ てきた。これによれば¹⁹⁾、図6に示した乾式伸線の太径鋼線、

湿式伸線の細径鋼線および図7の時効処理した鋼線のいずれ も、α中の最大C濃度が1at.%を超えるとデラミネーション が発生することから、デラミネーション発生に対して θ 分解 が重要な役割を果たしていると考えられるようになってき た。また、 θ 分解による α 中のC濃度で考えると、線径効果 や低温時効でデラミネーションが発生し高温時効では発生し ない現象を統一的に説明することができる。高炭素鋼線の θ 分解はミクロ・マクロ的に不均一に起きていると考えられる ため、θ分解の不均一性について着目し、デラミネーション 発生機構に関して以下の考察が行われている¹⁹⁾。鋼線の強 度は、ラメラー間隔、転位密度以外にCの転位固着強化によ っても影響されると考えられるため、不均一な θ 分解はミク ロ的な強度の不均一性を増加させることを意味している。更 に、加工歪の増加に伴うラメラー間隔の分布幅の拡大も、ミ クロ的な強度の不均一性を助長する。鋼線の強度は均一では なく、加工歪の増加や伸線中の時効によって、強度の不均一 性が増加すると考えられる。強度の不均一性が増加した鋼線 では、ねじり試験においてねじり変形が伝播しにくく局在化 しやすいため、強度の低い領域、つまり θ 分解が少ない領域 にねじり変形が集中し亀裂が発生すると考えられている。

5 スチールコードの高強度化の進展

スチールコードの高強度化手段として、①パテンティング 材強度の増加、②伸線加工歪の増加、③伸線加工での加工硬 化率の増加がある。これらのいずれの方法によっても強度を 増加させることが可能であるが、延性の低下を考慮する必要 がある。図9⁴⁾にパテンティング材強度とデラミネーション 発生強度の関係を示す。同一強度の鋼線において、伸線加工 歪を大きくして強度を確保した鋼線よりも、パテンティング

図9 デラミネーション発生強度に及ぼすパテンティング材強度の影響

材強度を増加させて強化した鋼線ほど高強度域までデラミネ ーションが発生しないことがわかる。このことは、スチール コードの高強度化とデラミネーションの抑制を両立させる手 段として、パテンティング材強度と加工硬化率を増加させる 手法を指向すべきであることを示している。加工硬化率に対 しては、ラメラー間隔の影響が支配的であり、初期ラメラー 間隔が微細化するほど加工硬化率が大きく、特に加工歪が高 い領域で著しい効果がある。 aの固溶強化、析出強化を利用 してパテンティング材の強度を増加させても加工硬化率はほ とんど変化せず、また伸線加工歪が高い領域では固溶強化、 析出強化などの強度の加算則性が成り立たなくなる。以上の ことから、スチールコードに代表されるような高い伸線加工 歪を必要とする鋼線の強化手段として、ラメラー間隔を微細 化させることがパテンティング材の強化と加工硬化率の増加 の両者に対して有効となる。

C量の増加とCr添加によってラメラー間隔が微細化し、 たとえば過共析のCr添加鋼では約60 nmと非常に微細なラ メラー間隔となる²¹⁾。この結果、パテンティング材の強度 として1500 MPaが得られ、現状の0.8%C鋼に比べると 200 MPa以上も高い強度となる。CおよびCrは、ラメラー 間隔の微細化により加工硬化率も著しく増加させる。このよ うなことから、従来の共析鋼よりもC量を大幅に増加した過 共析のCr添加鋼が開発されている。また、粒界αを抑制す る観点から、過共析のB添加鋼²²⁾も提案されている。 0.96%C-0.2%Cr鋼でデラミネーションが発生しないこと を条件に実現できる強度と線径の関係を図10²¹⁾に示す。ラ メラー間隔の超微細化によって、過共析鋼の到達強度は従来 の共析鋼を大幅に上回り、0.2 mmで4070 MPa、0.06 mm で5170 MPa、更に0.04 mmでは5700 MPaにも達する。こ れらの強度レベルは、スチールコードの競合材料であるアラミ

図10 過共析Cr添加鋼の線径と到達強度の関係

ドや炭素繊維などの強度と比較しても高い値を実現している。

6 おわりに

現在、スチールコードではタイヤの軽量化・低コスト化を 目的に4500~5000 MPaを視野に入れた開発が進められて いる。高強度化は工業的に重要であるばかりでなく、鉄鋼材 料の極限強度の追求という側面もある。今後もスチールコー ドの高強度化を進展させるためには、阻害要因となっている 延性低下機構を解明し、これを抑制する技術の確立が必要で ある。また、伸線加工過程でのセメンタイトの変形メカニズ ム、数ナノレベルになっているセメンタイトの分解抑制、加 工硬化機構の解明など、開発を支える基盤研究の拡充も重要 となる。更に、スチールコードの高強度化の進展に伴い、加 工中の断線原因となる介在物サイズは一層厳しくなることが 予想される。このため、高強度化に当たっては、鋼材開発も さることながら製鋼、圧延、熱処理、伸線の各要素技術の連 携・一貫開発が今後ますます重要になると考えられる。

参考文献

- 1) 西川道夫: 塑性と加工, 39 (1998) 4, 303.
- 高橋稔彦,南雲道彦,浅野厳之:日本金属学会誌,42 (1978),708.
- 高橋稔彦,樽井敏三,今野信一:鋼構造論文集,1-4 (1994),119.
- 4) 樽井敏三:第188 · 189回西山記念技術講座,日本鉄鋼協会編,東京,(2006),141.
- 5) G. Langford : Met. Trans., 8A (1977), 861.
- 6) 樽井敏三,丸山直紀,田代 均:鉄と鋼,91 (2005), 265.
- 7) T. Mizoguchi, T. Furuhara and T. Maki:

Proc.Inter.Symp., Ultrafine Grained Steels, ISIJ, (2001), 198.

- 8) 樽井敏三,丸山直紀,高橋 淳,西田世紀,田代均:新日鉄技報,381 (2004),51.
- 9) K. Makii, H. Yaguchi, M. Kaiso, N. Ibaraki, Y. Miyamoto and Y. Oki : Scripta Mater., 37 (1997), 1753.
- 10) 宝野和博:まてりあ, 39 (2000), 230.
- 11) 山田凱朗:鉄と鋼, 60 (1974), 1624.
- 12) 中村芳美,川上平次郎,藤田 達,山田凱朗:26-3 (1976),65.
- 13) M.H. Hong, W.T. Reynolds, T. Tarui and K. Hono : Metall. Mater. Trans. A, 30A (1999), 717.
- 14) K. Hono, M. Ohnuma, M. Murayama, S. Nishida,
 A. Yoshie and T. Takahashi : Scr.Mater., 44 (2001), 977.
- 15) Languillaume, G. Kapelski and B. Baudelet: Acta

Mater., 45 (1997), 1201.

- 16) A. Taniyama, T. Takayama, M. Arai and T. Hamada : Scr. Mater., 51 (2004), 53.
- 17)山田凱朗,隠岐保博,水谷勝治,嶋津真一:R&D神戸
 製鋼技報, 36-4 (1986), 71.
- 18) Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno,
 A. Moriai, N. Minakawa and Y. Morii : Acta Mater.,
 53 (2005), 463.
- 19) 樽井敏三, 丸山直紀:鉄と鋼, 90 (2004), 1031.
- 20) 田代 均:まてりあ,44 (2005),495.
- 21) I. Ochiai, S. Nishida, H. Tashiro : Wire J. Int., 26 (1993) 12, 50.
- 22)長尾 護,家口 浩,茨木信彦,落合憲二:鉄と鋼, 89 (2003), 329.

(2006年9月4日受付)