中性子の鉄鋼研究への応用-5

中性子その場回折実験による強度と変形機構の解析

Deformation Mechanism Analysis by in situ Neutron Diffraction

友田 陽 Yo Tomota 鈴木徹也 Tetsuya Suzuki

茨城大学 大学院理工学研究科 応用粒子線科学専攻 教授

茨城大学 工学部 超塑性工学研究センター 助教授

し はじめに

材料のミクロ組織状態を定量化し力学的挙動との関係を議 論するとき、材料試験で用いる試験片と同程度のサイズの試 料を対象にして定量測定できることが望ましく中性子回折で はそれが実現できる1)。実用材料の多くは複合組織を呈する ので、階層的な不均一塑性変形が起こるのが特徴であり、こ れに起因して内部応力(除荷後は残留応力)が発生する。た とえば、板材を曲げ加工すると板厚方向に巨視的な応力分布 が残留する。これを第一種(残留)応力(macroscopic stress)と呼び、残留応力測定の主たる対象になっている²⁻⁴⁾。 一方、複合材料に典型的にみられるような構成相間の応力分 配は「相応力 (phase stress) | と呼ばれる。また、単相多結 晶体であっても結晶粒の方位によって塑性変形量が異なり結 晶粒単位で平均内部応力が発生するので、本稿ではこれを 「粒応力 (intergranular stress) | と呼ぶ。これらの応力は第 二種 (残留) 応力と呼ばれ巨視的な第一種残留応力と区別す る必要がある^{3,4)}。第二種応力に起因する弾性ひずみは構成 相の(hkl)格子面間隔の変化として中性子回折によって測定 できる。X線回折では表面の特殊な応力状態のみ測定できる のに対して、中性子回折では試験片内部あるいは全体の平均 値(巨視的平均)を測定できるのが特長である。さらに塑性 変形を受け結晶粒内に転位組織が発達すると、転位セル内と セル壁の間でも応力分布が生じるが、これは回折プロファイ ルの幅広がりとして現れる(第3種応力)。転位セルの大きさ や転位密度は適当なプロファイル解析法を用いると推定でき る。たとえば引張・圧縮変形中に、その場測定により試料の 同一部分における弾性ひずみや転位密度の変化を連続的に追 えるのが中性子回折の強みである。また、広角散乱 (ブラッ グ回折)のみでなく、小角散乱を用いてナノサイズからミク ロンサイズまでの組織変化を追える可能性があり、今後の発 展が期待される。従来から利用されている電子顕微鏡観察法

などでミクロ組織の詳細を調べ、その巨視的定量測定を中性 子散乱で測定する相補的な利用方法がきわめて効果的であ る。

飛行時間法では図1のように検出器を配置すると、単軸変 形する試験片の負荷軸方向とその垂直方向の回折プロファイ ルを同時に測定できる。さらに検出器を多数の角度に配置す れば集合組織変化も追うことができる。本稿では種々な鉄鋼 材料について中性子その場回折実験により行われた変形特性 研究の一端を紹介し、本手法の将来性を展望する。

2 多結晶体の弾塑性変形の不均一性

2.1 弾性変形

単結晶の弾塑性変形は結晶方位依存性を示し、単相多結晶 体に埋め込まれた個々の結晶粒も結晶方位依存性を示す。表 1に単結晶と多結晶の弾性係数の例^{3,4)}として縦弾性係数(ヤ ング率)を示した。表にみられるように鉄(Feあるいはステ ンレス鋼)はフェライト(bcc)でもオーステナイト(fcc)で も弾性異方性が大きく、単結晶のヤング率は結晶方位によっ

図1 単軸変形その場中性子回折実験の概要(飛行時間法の場合の模 式図)

て大きく異なる。試験片が単軸引張を受けたときに多結晶体 の中に埋め込まれた [hkl] 結晶粒が周囲の結晶粒の拘束を受 けながら伸びるときのひずみは、[hkl] 単結晶試験片の場合 とは異なる。ここで、多結晶体に負荷された引張応力を [hkl] 結晶粒の荷重方向の線ひずみで除した値を回折ヤング 率 (E_{hkl})と呼ぶ。中性子残留応力測定では格子面ひずみを 測定し、多結晶体の平均応力(第一種応力)を同定すること が主目的であるから、回折弾性係数を用いて測定された格子 面ひずみからフックの式により応力を計算する。この [hkl] 回折弾性係数は実際に引張試験をしながらその場中性子回折 実験を行って求めれば、集合組織などの影響も入れた値が求 められる。一方、単結晶から多結晶の弾性係数を理論的に計 算する方法には、個々の結晶粒が同じひずみを受けると仮定 するVoigtモデル⁵⁾、同じ応力を受けると仮定するReussモ デル⁶⁾、応力平衡条件とひずみ適合条件をともに満足させる セルフコンシステント (Kröner) モデル⁷⁾が知られており、 測定値がない場合はKröner モデルによる理論値がよく利用 される。同モデルによる回折ヤング率を表1に示した。単結 晶の場合より差は小さくなるが、依然として [hkl] 依存性が ある。

表1 種々な金属結晶の回折ヤング率 (GPa)^{3,4)}およびパーライト鋼の測定結果⁸⁾

	Single crystal				Poly crystal (Kroner model)			
bcc	2(S ₁₁ -S ₁₂)/S ₄₄	200	110; 211	222	200	110; 211	222	Bulk
Fe	2.51	125.0	210.5	272.7	173.3	225.5	250.6	212.7
v	2.13	80.5	141.3	176.5	114.0	141.7	154.1	135.1
Cr	0.71	333.3	268.5	252.1	305.8	273.7	264.4	279.5
fcc	2(S ₁₁ -S ₁₂)/S ₄₄	200	111	220	200	111	220	Bulk
Fe	3.80	93.5	300.0	193.2	149.1	247.9	212.7	195.5
Cu	3.20	66.7	191.1	130.3	101.1	159.0	139.1	129.4
Al	1.22	63.7	76.1	72.6	67.6	73.4	71.9	71.0
Measured E _{hkl} by neutron diffraction					171	235	256	224*
(Poisson's ratio measured)					(0.33)	(0.29)	(0.26)	(0.28*)

* determined by the Rietveld refinement

パーライト鋼の飛行時間法により得られた回折プロファイ ルおよび後述するリートベルト解析結果を図2⁸に示す。弾 性変形域の引張応力を負荷した状態で、引張軸方向とその垂 直方向の回折プロファイルを求め、全ピークを対象にした リートベルト解析によりフェライトの平均ヤング率とポアッ ソン比を求めた。その結果、ヤング率とポアッソン比は 224 GPaと0.28 であり Kröner モデルによるバルク平均値 212.7 GPaと0.30 (表1にはポアッソン比は割愛した)にほ ぼ一致している (セメンタイトの弾性係数はフェライト鉄に 近く⁹⁾体積率も小さいので、その影響は小さいと考えられる)。 ここで、個々のシングルピークに対して中心位置を求め格子 面ひずみから回折弾性係数を算出した結果⁸⁾も表1に示して あり、測定結果とKröner モデルによる推定は良く一致して いる。

2.2 塑性変形

結晶の塑性変形は、転位の運動によるすべりによって通常 生じる。すべりの起こり易さは結晶粒の方位によって異なる ので、引張外力に対して [hkl] を向いた個々の結晶粒間で不 均一塑性ひずみが生じ、引張外力と [hkl] 結晶粒群の弾性ひ ずみ (負担している応力)の関係は非線形で方位間の差が大 きくなる。単結晶と多結晶の塑性変形を関連づける試みに 個々の結晶粒が負担する応力が同じとする Sachs モデル¹⁰⁾ (ひずみの適合条件を満足していない)および同じひずみを 生じるとする Taylor モデル¹¹⁾ (粒界の応力平衡条件を満足し ていない)が変形応力の下界および上界を与えるモデルとし て使われてきた^{3,4)}。現在は、ひずみ適合条件と応力平衡条 件の両方を満足するセルフコンシステントな弾塑性変形モデ ル (EPSC model) が弾性変形における Kröner モデルに対応 する解析法として良く使われている^{3,4)}。図3は Clausen et al.^{12,13)}がオーステナイト系ステンレス鋼多結晶体の引張変

図2 パーライト鋼の回折プロファイル(飛行時間法)に対するリートベルト解析の例⁸⁾

形についてECPSモデルにより解析し、中性子その場測定に よる測定結果と比較した図である。同じ面心立方晶金属の Cuは図3とよく似た傾向を示すがA1はかなり異なり、表1 に示した結晶の弾性異方性の強さや積層欠陥エネルギーが大 きな影響を及ぼす¹²⁾。セルフコンシステントモデルでは、 個々の結晶粒内では多重すべりを表現できるが、粒内では塑 性ひずみは一様とみなして粒界で弾性適合させるため、モデ ルの適用は数%の塑性ひずみまでに限られるようである。図 3には塑性変形後に除荷すると残留粒応力(ひずみ)が残る 様相を破線で挿入した。塑性加工材の残留粒応力は変形初期 の結晶粒間の不均一塑性変形で生じた粒応力が大ひずみ変形 まで残るので、残留応力測定の考察には有用である。数 10%の塑性ひずみによる集合組織の発達は、結晶塑性有限 要素法などによる解析が進められている¹⁴)。

変形挙動のその場中性子回折 による解析方法

3.1 中性子散乱データからわかる情報

ブラッグ回折プロファイルから得られる情報は、(1)回折 強度(集合組織・相体積率)、(2)ピーク位置(格子面間隔・ 弾性ひずみ)、および(3)回折ピークの幅広がり(ミクロ組 織)である。回折強度の方向依存性を測定すると極点図が求 められる。X線回折の場合とは異なり、回折対象となる測定 領域(ゲージ体積)を試料内部で走査して場所による相違を 測定すること(現状では最小数mm³程度の空間分解能)や試 料全体(この場合、試験片の最適形状は球)の巨視的平均を 求めることができる。ロスアラモス研究所(LANCE)の装 置には圧縮変形や加熱冷却に伴う集合組織変化を容易に追跡

図3 オーステナイトステンレス鋼に対するEPSCモデルによる計算 結果と引張変形中その場中性子回折実験結果^{12,13)} 除荷後に残留ひずみ(応力)が残る様子は(200)のみに示した が他の(hkl)も同様 できるように検出器が多くの方向に配置されている¹⁵⁾。飛 行時間法により多くの (hkl) 回折ピークを多数の角度から取 得して効率良く方位分布関数 (ODF) を得ることができる。 多相材料においては構成相の回折強度比より体積率が求めら れる。したがって、変形中にマルテンサイト変態が進行する TRIP 鋼や形状記憶合金の研究に適している。回折ピークの 中心位置の変化から格子面間隔の変化が算出され弾性ひずみ が同定できる。残留応力測定の場合は、基準となる無応力状 態の格子面間隔の決定に苦労することがある¹⁶⁾が、変形中 その場測定の場合は変形前の格子面間隔を基準に使えるため ひずみ測定は容易であり信頼性も高い。一方、回折プロファ イルの幅広がりには種々な要因があり、各々をモデル化・定 式化してフィッティングすることによって、たとえば転位密 度や粒径といった組織因子が推定される。

このほか、本シリーズ第1回で紹介されたBragg edge測 定¹⁷⁾や第2回の小角散乱法¹⁾などをその場測定に用いると、 さらに多様な定量的ミクロ情報を得ることが期待される。ま た、フェライトは常温では強磁性相であるが、鉄鋼材料には オーステナイトや介在物、析出物などの非磁性相が含まれる ことが多い。セメンタイトのキュリー点はフェライトより低 いので測定温度を変えて中性子の核散乱と磁気散乱を分離す ればさらに効果的な定量測定法が考案されると予想される が、これらはほとんど未開拓の分野である。

3.2 リートベルト解析による構成相体積率および 平均弾性ひずみの測定

リートベルト解析法はX線回折プロファイルに対しても結 晶構造を精密に同定するために良く用いられている。多数の 回折ピークに対して一括フィッティングするので、前出の図 2⁸⁾ではフェライトとセメンタイトの格子定数と体積率を精 度良く求められる。しかし、試料が外力あるいは内部応力の かかった状態にあると格子面間隔が弾性的に変形し、その変 化は結晶の弾性異方性に起因して変化割合が (hkl) 面によっ て異なる。当然、フィッティング精度が低下するが、塑性変 形を受けた試料全体の平均弾性ひずみを推定するには適して いるという考えもあり、飛行時間法による残留応力測定への 利用が提案されている¹⁸⁾。後述するように、応力を負荷す ると引張方向の測定では格子面間隔が広がり垂直方向では狭 くなる。しかもフェライト相とセメンタイト相の変化が異な るので、両構成相が平均して受けている弾性ひずみ (相応力) を測定するには良い平均化法と思われる。

3.3 シングルピークに対するプロファイル解析と ミクロ因子の定量化

X線回折においてプロファイル解析により結晶子 (mosaic

structure) サイズや転位密度を測定する方法が用いられて おり、同様な手法が中性子回折でも使える。最も簡単には回 折プロファイルの半価幅 (FWHM: Full width at the half maximum) が目安として用いられる。さらにプロファイル 形状変化の要因を分離できれば有用な情報となる。プロファ イル解析では、転位などによる局所的な応力分布の情報は 「ミクロひずみ」、転位セルの発達による結晶子サイズは「粒 径」で表現され、前者の変化はガウス関数、後者はローレン ツ関数で近似されることが多い。これらを組み合わせてミク ロ情報とプロファイル形状の関係を解析する手法には、大き く分けて積分幅法¹⁹⁾、フーリエ係数法²⁰⁾、TMF (Transformed model fitting) 法²¹⁾がある。図4は角度分散法により 得られた伸線共析鋼のプロファイルを解析した例である^{22,23)}。 図にみられるように強伸線加工により粒径が小さくなってい るので、ガウス関数でフィッティングするとプロファイルの 裾野で大きな誤差が生まれる。そこで、適当な大きさの粒径 を有する十分に焼鈍された純鉄のプロファイルを基準にして TMF法により図のようにフィットされた結果からミクロひ ずみ (転位密度)と粒径が見積もられた²³⁾。このようにして 得られたミクロひずみから転位密度を推算するが、これには 転位の種類や配列 (転位組織) が影響するので絶対値を議論 するのは困難なケースが多いと思われる。しかしながら相対 的な変化は良く把握できるので、塑性変形に伴う集合組織の 発達と粒応力、転位密度、粒径の結晶方位依存性とそれらの 極点図を同時に求める試みがなされ²⁴⁾、今後、塑性変形機 構を総合的に研究する有力なツールになると期待される。す でに、ステンレス鋼圧延材の残留粒ひずみ極点図を集合組織 極点図と同時に求め、理論モデルによる計算結果と比較する ことが進められている25-27)。今までに開発されているプロ ファイル解析法は、波長一定の角度分散法(主に原子炉中性 子源)に対する方法であるが、今後、利用が活発になる加速 器中性子源では飛行時間法が主流である。飛行時間法で得ら

れるプロファイルは、入射ビームのエネルギー分布に依存し た特有な形状を持っている(装置設計ではできるだけ対称な 回折プロファイルが得られるようにモデレーターによってエ ネルギー分布の調整が行われるが、通常、ラムダ型になる) ので、これに対応する解析プログラムを新たに開発する必要 がある。材料が降伏し塑性変形するようになると(弾塑性域)、 個々の[hkl]結晶粒群の挙動は大きく異なってゆくのでシン グルピークフィッティングが重要になってくる。

4 変形中のその場中性子回折実験例

4.1 単相鋼

(1) オーステナイト鋼の変形

(粒応力の発生と窒素添加量の影響)

高窒素オーステナイト系ステンレス鋼を飛行時間法により 引張変形中その場測定を行った。(111)回折を取り出して、 外力に対する変化を図5²⁸⁾にまとめた。引張方向(a)では外 力の増加に伴い格子面間隔が広がり、除荷によって元の方向 に戻る様子が見られる。また、回折積分強度が最初は変化し ないが途中より(降伏以降に対応)大きくなっている。垂直 方向(b)では、逆に格子面間隔が小さくなり、回折積分強 度が低下する。すなわち、多結晶体中の[111]結晶粒群が 負担している応力の変化とすべりに伴う結晶回転を反映した 結果が得られている。変形前の格子面間隔を基準にしてひず みを求めると図3に非常に良く似た傾向が得られた²⁹⁾。最初

図5 オーステナイトステンレス鋼の引張変形に伴う(111)回折プロ ファイルの変化²⁸⁾
 (a) 引張方向 (b) 垂直方向

は外力と格子面ひずみは直線関係を示し、その勾配から表1 のような回折弾性係数が求められる。やがて [110] 結晶粒 群ですべりが生じ応力の負担増加が鈍る様子が(220)格子 面ひずみの結果から推察され、これに対応して(200)格子 面ひずみが急増加する。引張方向の方位が [100] 群の結晶 粒は塑性変形しにくく、「110] 群は塑性変形しやすい結晶粒 であることがわかる。塑性変形の途中から除荷すると硬い結 晶粒群には引張ひずみ(応力)が残留する。図3は窒素無添 加鋼の結果であり窒素添加量が増加すると、このような応力 分配(粒応力)が大きくなる^{28,29)}。その理由は、高窒素鋼で は転位線がプラナーになって粒界に堆積しやすくクロスス リップが困難であるために粒界近傍の局所的な応力集中を緩 和しにくいためと考えられる。転位線がプラナーになり列を 作りやすい原因としては、窒素添加による積層欠陥エネル ギーの低下が考えられるが、合金元素量の異なる種々な高窒 素オーステナイト鋼について多くの鋼について調べたとこ ろ、主因は窒素原子の短範囲規則化によると思われる。規則 化を示唆する実験データは中性子小角散乱による高炭素オー ステナイト鋼との比較30)や引張変形中その場測定によって 得られている³¹⁾。また、オーステナイト鋼の繰り返し引張 圧縮変形に伴う粒応力の変化がLorentzen et al.によってそ の場中性子回折で調べられEPSCモデルによる解析と比較検 討されている³²⁾。

(2)フェライト(IF・ULC)鋼の動的ひずみ時効と転位密度

IF 鋼においても前述のオーステナイト鋼と同様な異方的 弾性変形に続いて塑性変形が始まると粒応力の発生が認めら れた³³⁾。通常の引張試験を行うとほとんど同じ応力—ひず み曲線を示すIF鋼とULC鋼について角度分散法で実験した 例を図6³⁴⁾に示す。中性子回折プロファイルを得るために試 験を停止している間にULC鋼では(b)に見られるように顕

図6 極低炭素 (ULC) 鋼および IF 鋼の引張ひずみと転位密度の関係 (引張変形中その場角度分散法中性子回折実験)³⁴⁾

著なひずみ時効硬化を示した。そこで、プロファイル解析に より転位密度を推算した結果が(c)である。粒径変化は2つ の鋼でほぼ同じであったが、転位密度(ミクロひずみ)は ULC鋼の方が高くなった。この転位密度と変形応力の関係 をBailey-Hirschの関係³⁵⁾で整理すると、ほぼ一直線上に乗 るので「ひずみ時効による硬化は運動転位が侵入型固溶元素 により固着され、変形を続けるために転位が増殖する、すな わち転位密度の増加によるものである」ことが、この実験に よって再確認された。

(3) マルテンサイト鋼(変態転位密度と変形組織形成過程)

中島と高木らは焼入れ状態のFe-18Ni (-C) マルテンサイ トの転位組織が、塑性変形に対しては不安定であり、圧延に より硬さは増すが転位密度は減少することを見出した^{36,37)}。 ラスマルテンサイト組織は塑性加工により良く似た変形転位 セル組織に生まれ変わる。徐らはFe-18Niマルテンサイト 鋼の飛行時間法による引張変形中その場中性子回折実験を 行った³⁸⁾。塑性変形の進行に伴う粒応力の発生状況は前述 のオーステナイト鋼、フェライト鋼や焼戻しマルテンサイト 鋼³⁹⁾の場合と似ていたが、回折プロファイルの半価幅に差 異がみられた。これらの鋼では変形に伴い半価幅が大きくな るのに、焼入れマルテンサイト鋼では図7に示すように3つ の回折面ともに減少した。マルテンサイト特有の低い比例限 と変形初期の高い加工硬化がみられ、転位の総密度は減少し ながら引張変形に対して抵抗力のある転位組織に変化するも のと想像される。

4.2 多相鋼

(1)2相ステンレス鋼(相応力とバウシンガー効果)

1990年代に引張変形中その場中性子回折実験が複合材料 を対象に多くの研究者によって行われマイクロメカニックス

図7 マルテンサイト鋼のFWHMと引張ひずみの関係(引張変形中その場飛行時間法中性子回折実験)³⁸⁾

解析との関係が議論された⁴⁰⁾。多相材料の場合は、個々の 構成相の平均情報が得られるので単相材料の場合以上にその 場中性子回折が役に立つ。フェライトとオーステナイトから 構成される2相ステンレス鋼は格好の実験対象であり、 Harjo et al.により熱応力測定(角度分散法⁴¹⁾および飛行時間 法⁴²⁾)から始まって、引張変形⁴³⁾、バウシンガー効果⁴⁴⁾など のその場測定が行われた。

引張圧縮変形に伴う軟質相オーステナイト(111)と硬質 相フェライト(110)の格子面ひずみ変化を図8⁴⁴⁾に示す。2 相合金の塑性変形過程は大きく分けると、(1)両構成相が弾 性変形、(2)軟質相のみが塑性変形開始および(3)両構成相 で塑性変形が進行の3段階からなる。(1)の段階では前述し た回折弾性係数の相違がみられる。(2)になるとオーステナ イト相が塑性変形し応力分担が減るために格子面ひずみの増 加が鈍り、その分フェライトの格子面ひずみが増す。(3)に なると両構成相で塑性変形が進むが相応力(ひずみ)の原因 になる塑性ひずみ差は2つの相の加工硬化の大きさによって 決まる。引張から除荷すると、硬質相フェライトには引張、

図8 2相ステンレス鋼の引張→圧縮応力反転に伴う相応力の変化44)

軟質相オーステナイトには圧縮の弾性ひずみ(応力)が残留 する。引き続き圧縮負荷に転ずると、軟質相オーステナイト にはすでに圧縮応力があるので簡単に圧縮降伏し塑性変形を 開始する。すなわち、相応力の発生が大きなバウシンガー効 果をもたらしていることが実感できる。単相材料より複相あ るいは複合組織材料の方がバウシンガー効果が大きいのはこ のためである。単相材料であっても図3で示したように粒応 力が生じる。従来、この粒応力はHeyn応力と呼ばれ、バウ シンガー効果の原因と考えられていた。しかし、単結晶でも バウシンガー効果が生じることが明らかとなってから、この 説は否定された感が強いが、最近の中性子その場測定実験は 粒応力が単相多結晶材料のバウシンガー効果の一因であるこ とを実証している。

(2) パーライト鋼(階層的不均一変形と伸線強化機構)

パテント処理したパーライト鋼、球状化処理材、焼戻しマ ルテンサイト鋼およびベイナイト鋼の基本的組織構成はフェ ライトとセメンタイトであり、基地組織とセメンタイトの形状 と量によって強度と加工硬化挙動が異なることを、中性子そ の場測定を用いると定量的に示すことができる^{23,45-49)}。こ こでは、温度を変えてパテント処理したラメラ間隔が異なる パーライト鋼⁶⁾を取り上げて説明する。図2の要領でリート ベルト解析を行い、引張応力負荷に伴うフェライトとセメン タイトの平均格子面間隔の変化をひずみに変換して図9⁸⁾に 示した。母相フェライトと強化相セメンタイトは対照的な挙 動を示している。すなわち、降伏が起こるとそれ以後はフェ ライトでは格子面ひずみがほとんど増加せずに、セメンタイ トの格子面ひずみが増加する(相応力の発生)。セメンタイ トが応力を負担することで複合材料的に加工硬化を起こして いる。ラメラ間隔が狭くなると、フェライトの格子面ひずみ が増大する、すなわちフェライト自体が強化されていること がわかる。

図9 パーライト鋼の変形における構成相間の応力分配(相応力)に及ぼすラメラ間隔(S₀)の影響⁸⁾ 試料A, B, CのS₀は、それぞれ82,102,160 μm、YSは0.2%耐力を表す。

次に、フェライトの (hkl) 回折プロファイルに対するシン グルピークフィッティングにより結晶方位による相違を調べ た結果が図10⁸⁾である。まず、弾性域の傾きが違うのは表1 で示したとおりである。次に、塑性域ではセメンタイトの存 在による相応力に粒応力が重畳しているため、各 (hkl) 面ひ ずみの挙動が異なる。

次に、このパーライト鋼を伸線加工すると、(1)フェライ ト相の<110>繊維集合組織が発達し、(2)ラメラ間隔が小 さくなり、(3)転位密度が増加し、(4)残留粒応力が増大し、 (5)ひずみが3を越えるとセメンタイトの分解が始まる⁵⁰⁻⁵²⁾。 (2)と(4)は含有炭素量が多いほど顕著であることも注目す べき点である。伸線ひずみが4を越えた巨大ひずみ付与材料 の強化機構はまだ明らかになっていない。真ひずみ4を受け た直径0.2 mmの過共析鋼線材を引張りながら飛行時間法で 格子面間隔の変化を測定した結果が図11⁵¹⁾である。先に、 角度分散法により測定した場合⁵⁰⁾と同様に、引張応力が 2.5 GPaを越えたあたりから直線関係から偏倚する。除荷す

図10 パーライト鋼中のフェライト相における変形に伴う結晶粒間 の応力分配の様相(粒応力の発生挙動)⁸⁾

ると同じ曲線上をたどって下がるので、これは超高強度域に おける非線形弾性変形挙動を観察しているものと思われる。 垂直方向のひずみは、著しい (hkl) 依存性を呈するが、これ は[110] 単結晶の単軸引張弾性変形では垂直断面が楕円形 となり [110] 方向にはごくわずか伸びるという弾性異方性 があることから<110>繊維集合組織を有する材料の特異な 挙動である。(a) では弾性変形域を眺めているだけで塑性変 形の様相はわからない。この強伸線材は同じ材料をオーステ ナイト化して焼入れたマルテンサイトの場合(脆性破壊)と は異なり、降伏直後にネッキングを示し延性 (ディンプル) 破壊する⁵¹⁾。変形機構は転位の運動によると思われ、圧延 加工も容易にでき延性に富む。(b)には焼鈍後の実験結果を 示した。低温時効ではほとんど影響がない。673K焼鈍材で は図9と同じように、降伏後には負荷応力が増加しても格子 面ひずみの増加が停滞する(図中の矢印参照)。この焼鈍材 では透過電子顕微鏡観察によりセメンタイトの再析出が認め られるので、応力分配(相応力)が生じていると思われる52)。

(3) フェライトーパーライト(セメンタイト)鋼(結晶粒径の影響)

図11の伸線材はラメラ間隔が20nm程度の超微細組織に なっているが、変形機構は転位の運動によると予想された。 前述のパーライト鋼ではラメラ間隔(フェライト相のすべり 距離に対応)が小さくなると相応力も大きくなる傾向がみら れた。SM490鋼(1.43 Mn-0.16C鋼)を用いて熱間溝ロール 圧延によって作製されたフェライト粒径が3.6 µmの微細粒 試料と通常法で得られた46.2 µmのフェライトーパーライ ト鋼を用いて、引張変形その場中性子回折を角度分散法で 行った⁵³⁾。その結果、粒応力あるいは除荷後の残留粒応力 は微細粒材の方が大きいことがわかった。その原因は結晶粒 が細かくなるほど粒界近傍の付加的すべり変形による粒応力 の緩和が困難になるからであろうと推察される。また、プロ

ファイル解析により、塑性変形に伴う粒径 (転位セル径)の 減少と転位密度の増加が見積もられた⁵³⁾。その結果による と粒径が小さくなっても転位密度の増加割合はほぼ同じで あった。このような引張変形に伴う転位密度や転位セルサイ ズの変化がその場測定できれば、巨大ひずみ加工を受けた材 料など、最近注目されている材料の変形機構の解明に多いに 役立つと思われる。一般に、巨大ひずみ加工を受けた材料の 微細結晶粒では強い内部応力場が生じていることが知られて いる。種々な炭素含有量をもつ鋼の伸線加工においては、炭 素量が多い方が、そして伸線ひずみが大きい方が粒径は微細 になり、かつ粒応力が大きい⁵²⁾。

(4) TRIP-DP鋼(残留オーステナイトの加工硬化への影響)

強度と延性の優れた組み合わせがTRIP-DP鋼によって達 成されている。延性が増す原因は、形状記憶現象におけるよ うな変態ひずみではなく、残留オーステナイトが変形中に硬 いマルテンサイトに変態し加工硬化を増大させるからである と考えられてきた。実際に、準安定オーステナイト鋼を種々 な温度で引張試験すると、変形中に変態が刻々と起こり加工 硬化を増大させる。特にネッキング開始時期に変態が起こる とその抑制に効果的で大きな均一伸びが得られることがその 場中性子回折によって実証された⁵⁴⁾。TRIP-DP鋼に対して 角度分散法による引張変形中その場中性子回折実験を行った ところ、意外にも残留オーステナイトの変形強度がフェライ ト母相より大きいことが判明した55-57)。図12は、市販の TRIP-DP鋼を用いて飛行時間法で測定した結果である57)。 (b) では変形に伴うマルテンサイト変態量をリートベルト解 析により同定した。続いて、フェライト (ベイナイトおよび マルテンサイトによる回折も重なっている) とオーステナイ トの平均格子面間隔からひずみを求めると(a)のようになっ た。ここで、マルテンサイト変態の開始する応力 (P2)、 フェライトが塑性変形を開始する応力 (P1) およびオーステ ナイトが塑性変形を開始すると思われる応力 (P3) を図のよ うに決定することができた。その結果、塑性変形はフェライ ト内のすべりで始まり、炭素量が約1%まで濃縮したオース テナイト粒は硬質第2相として加工硬化の増大に寄与してい ることが明らかになった。これらP1, P2, P3を組織制御に よって調整することによって、望ましい強度と均一伸びの組 み合わせを有する材料の開発に有益な知見を与えることがで きると思われる。オーステンパード可鍛鋳鉄 (ADI) でも似 た結果が得られている58)。さらに形状記憶合金では、変形 と加熱による形状記憶・回復過程を追うことができメカニズ ムの解明と特性改善に活用することができる^{59,60)}。

5 おわりに

前回の組織制御における時分割測定では中性子ビーム強度 の低さが障害となって、速い反応には利用できなかった⁶¹⁾ のに比べると、力学的特性の研究はやりやすく多くの研究が すでになされている。最初は複合材料の実験が多くマイクロ メカニックスによる理論構築に利用され、最近では話題性の ある新材料の研究が増えつつある。しかし、その場中性子散 乱・回折実験は利用されるようになってから日が浅く、今後 新しい様々な測定手法が開発される可能性が高く、強度、変 形、破壊の研究にとってこれまでにない有力な実験ツールに 発展すると期待される。本協会の産発プロジェクト鉄鋼展開 研究「中性子利用鉄鋼評価技術の基礎検討に係わる研究」(代 表: 友田 陽) では、鉄鋼企業6社、原子力機構、物材機構、 茨城大学からメンバーが集まり、鉄鋼研究のブレークスルー をもたらすと期待される新しい評価解析技術の開発について 議論を始めた。特に、世界最高性能を有するI-PARCの装置 を有効に活用することが国内鉄鋼業の発展にとってきわめて 有効であると思われる。

参考文献

- 1) 大沼正人, 鈴木淳市:ふぇらむ, 11 (2006) 10, 631. (本展望シリーズ (2))
- 2) 鈴木裕士, 菖蒲敬久:ふぇらむ, 11 (2006) 11, 701.

(本展望シリーズ (3))

- 3) T. Lorentzen : Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation, ed. by M.E. Fitzpatrick and A. Lodini, Taylor & Francis, (2003), 114.
- 4) M.T. Hutchings, P.J. Withers, T.M. Holden and T. Lorentzen : Introduction to the Characterization of Residual Stress by Neutron Diffraction, Taylor & Francis, (2005), 215.
- 5) G. Simmons and H. Wang : Single Crystal Constants and Calculated Aggregate Properties : a Handbook, M.I.T. Press, Boston, (1971) ; W. Voigt : Lehrbuch der Krystallphysik, B.B.Teubner, (1928)
- 6) A. Reuss : AZ.Angew.Math.Mech., 9 (1929), 49. (after ref. 8)
- 7) E. Kroner : Z.Physik, 151 (1958), 404.
- T. Shinozaki, S. Morooka, T. Suzuki, Y. Tomota and T. Kamiyama : Proc. of the 3rd Int. Conf. on Advanced Structural Steels, Gyeonju, Korea, (2006), 349-353.
- 9) 梅本 実:ふぇらむ,9(2004),151;梅本 実,土谷 浩一:鉄と鋼,88(2002),117.
- 10) Z. Sachs: Ver.Drsch.Ing., 72 (1928), 734. ((3), (4) より引用)
- 11) G.I. Taylor : J.Inst.Metals, 62 (1938), 307.
- 12) B. Clausen, T. Lorentzen and T. Leffers : Acta mater., 46 (1998), 3087.
- 13) B. Clausen, T. Lorentzen, M.A.M. Bourke and M.R. Daymond : Mater.Sci.Engng., A259 (1999), 17.
- 14) たとえば, 高橋 寛: 多結晶塑性論, コロナ社, (1999)
- S.C. Vogel, C. Hartig, L. Luttrtotti, R.B. Von Dreele, H.R. Wenk and D.J. Williams : Powder Diffraction, 19 (2004), 65.
- T.M. Holden, H. Suzuki and D.G. Carr : ISIJ Int., 46 (2006), 959.
- 17) S. Harjo,神山 崇:ふぇらむ, 11 (2006) 9, 567. (本 展望シリーズ (1))
- M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele,
 B. Clausen and T. Lorentzen : J.Appl.Phys., 82 (1997), 1554.
- 19) TH.H. De Keijser, J.I. Langford, E.J. Mittemeijer, and B.P. Vogels : J. Appl. Phys. 15 (1982), 308.
- 20) 桑野 壽: 材料, 26 (1977), 735.
- 21) P. Strunz, P. Lukas and D.J. Neov: Neutron Res., 9

(2001), 99.

- 22) P. Lukas, Y. Tomota, S. Harjo, D. Neov, P. Strunz and P. Mikula: Journal of Neutron Research, 9 (2001), 415-421.
- 23) Y. Tomota, P. Lukas, D. Neov, S. Harjo and Y.R. Abe : Acta mater., 51 (2003), 805.
- 24) S. Ryufuku, H. Suzuki, T. Suzuki and Y. Tomota : unpublished work at JAEA & Ibaraki Univ., (2006)
- 25) Y.D. Wang, R. Lin Peng, X-L. Wang and R.L. McGreevy : Acta mater., 50 (2002), 1717.
- 26) J.W.L. Pang, T.M. Hoden, J.S. Wright and T.E. Mason : Acta mater., 48 (2000), 1131.
- 27) C. Larsson, B. Clausen, T.M. Holden and M.A.M. Bourke : Scripta mater., 51 (2004), 571.
- 28)池田圭太,友田 陽,鈴木淳市,盛合 敦,神山 崇:鉄と鋼,91 (2005),822.
- 29) M. Ojima, K. Ikeda, Y. Tomota, T. Kamiyama, Y. Adachi and Y. Katada : Proc. of the 3rd Int. Conf. on Advanced Structural Steels, Gyeonju, Korea, (2006), 614-616.
- 30) V.M. Nadutov, L.A. Bulavin and V.M. Garamus : Mater.Sci.Engng.A, A264 (1999), 289.
- 31) 友田 陽:窒素鋼の新展開とその利用,第190回西山記 念技術講座,日本鉄鋼協会編,(2006),51.
- 32) T. Lorentzen, M.R. Daymond, B. Clausen and C.N. Tome: Acta mater., 50 (2002), 1627.
- 33)鳥居周輝,友田 陽,鈴木徹也,朴 鍾皓,及川健一, 神山 崇:日本機械学会論文集A 68-675 (2002), 1540.
- 34) Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida and D. Neov : Acta mater., 51 (2003), 819.
- 35) J.E. Bailey and P.B. Hirsch : Phil.Mag., 4 (1960), 85.
- 36) S. Takaki, Y. Fujimura, K. Nakashima and T. Tsuchiyama : presented at Thermec 2006, Vancouver, Canada, Mater.Sci.Forum, 539-543 (2007), 228.
- 37) K. Nakashima, Y. Fujimura, T. Tsuchiyama and S. Takaki : presented at Thermec 2006, Vancouver, Canada, Mater.Sci.Forum, 539-543 (2007), 4783.
- 38) P.G. Xu, Y. Tomota and T. Kamiyama : unpublished work at KEK and Ibaraki University, (2005)
- 39) S. Morooka, T. Suzuki, Y. Tomota and T. Kamiyama : unpublished work, (2005)

- 40) For example, P. Withers and A.P. Clarke : Acta mater., 46 (1998), 6585.
- 41) S. Harjo, Y. Tomota and M. Ono : Acta mater., 47 (1999), 353.
- 42) S. Harjo, Y. Tomota, S. Torii and T. Kamiyama : Materials Transactions, 43 (2002), 1696.
- 43) S. Harjo, Y. Tomota, P. Lukas, M. Vrana, D. Neov,
 P. Mikula and M. Ono: Acta mater., 49 (2001),
 2471.
- 44) S. Harjo, Y. Tomota, D. Neov, P. Lukas, M. Vrana and P. Mikula : ISIJ Int., 42 (2002), 551.
- 45) 友田 陽: 熱処理, 43 (2003), 73.
- 46) Y. Tomota, O. Watanabe, A. Kanie, A. Moriai, N. Minakawa and Y. Morii : Materi. Sci.Technology, 19 (2003), 1715.
- 47) T. Suzuki, Y. Tomota, M. Isaka, A. Moriai, N. Minakawa and Y. Morii : ISIJ Int., 44 (2004), 1426.
- 48) A. Kanie, Y. Tomota, S. Torii and T. Kamiyama : ISIJ Int., 44 (2004), 1961.
- 49)諸岡 聡,鈴木徹也,友田 陽,塩田佳徳,神山 崇:鉄と鋼,91 (2005),816-821.
- 50) Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno,
 A. Moriai, N. Minakawa and Y. Morii : Acta mater.,
 53 (2005), 463.
- 51) Y. Shiota, Y. Tomota, A. Moriai and T. Kamiyama : Metals and Materials International, 11 (2005), 371.
- 52) T. Shiratori, Y. Shiota, S. Ryufuku, Y. Adachi, H.

Suzuki and Y. Tomota : Proc. of the 3rd Int. Conf. on Advanced Structural Steels, Gyeonju, Korea, (2006), 354-359.

- 53) T. Ono, Y. Tomota, P. Lukas, D. Lugovvy, D. Neov,
 N. Tsuchida and K. Nagai : Materi.Sci. Technology,
 20 (2004) 121.
- 54) E.D. Oliver : Ph.D Thesis, University of Manchester, (2002), 121.
- 55) Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai and Y. Morii : Acta mater., 52 (2004), 5737.
- 56) O. Muransky, P. Sittner, P. Lukas, J. Zrnik and E.C. Oliver: Proc. of the 3rd Int. Conf. on Advanced Structural Steels, Gyeongjiu, Korea, (2006), 933-938.
- 57) 成井章記, 友田 陽:日本鉄鋼協会第152回秋季講演大 会学生ポスターセッション PS-42
- 58)小川仁史,友田 陽:日本鉄鋼協会第152回秋季講演大 会学生ポスターセッション PS-39
- 59) Y. Tomota, S. Harjo, P. Lukas, D. Neov and P. Sittner : Journal of Metals, 52 (2000), 32.
- 60) E.C. Oliver, T. Mori, R. Daymond and P.J. Withers : Acta mater., 51 (2003), 6453.
- 61) 友田 陽, 徐 平光:ふぇらむ, 12 (2007) 1, 15. (本 展望シリーズ (4))

(2006年11月6日受付)