中性子の鉄鋼研究への応用-7

中性子ラジオグラフィの基礎と応用

Basic of Neutron Radiography Technique and Its Applications

松林政仁 Masahito Matsubayashi 中性子イメージング・分析研究グループ

日本原子力研究開発機構 量子ビーム応用研究部門 中性子産業利用技術研究ユニット

c 1 はじめに

司張

中性子ラジオグラフィはX線又は y線ラジオグラフィ(以 下、X線ラジオグラフィ等という。)と類似した非破壊放射線 透過検査法である。その特長は、X線及び y線が物質内の核 外電子との相互作用により減衰されるのに対し、中性子は物 質を構成する元素の核そのものと相互作用を起こして減衰さ れる点にある。中性子及びX線の各元素に対する質量減弱係 数を図1¹⁾に示す。X線の減弱は主として物質内の自由電子 密度に依存するため質量減弱係数は原子番号に対して単調増 加の傾向を示している。これに対して熱中性子(0.025eV) の場合は原子番号に対して質量減弱係数が急激に変化してい る。また同じ中性子でも熱中性子と冷中性子(0.003eV)で はエネルギーの違いにより、同一元素に対する質量減弱係数 に顕著な差が見られる。このように中性子ラジオグラフィに

よりX線ラジオグラフィ等と性質の異なる相補的な情報が得 られる。具体的には、中性子を用いることによりX線又は y 線の減衰が小さい水素、炭素、硼素等を含む物質(例えば水、 プラスチックあるいは有機物等)の減衰像が得られる一方で、 中性子はX線が透過しにくい鉄、鉛、ウラン等の重金属を透 過するため、これら重金属で構成されたものの内部を検査す ることができる。

中性子ラジオグラフィの基礎

典型的な中性子ラジオグラフィ装置は図2に示されるよう に中性子源、コリメータ及び撮像系の3つの要素から構成さ れる。観察対象試料を中性子源より発生され、コリメータに よって方向が揃えられた中性子ビーム内に置くと、試料内で の中性子の散乱と吸収によって本来一様であった中性子ビー

図1 異なるエネルギーを持つ中性子及びX線に対する質量減弱係数

図2 典型的な中性子ラジオグラフィ装置

ム強度分布が変化し、試料の内部構造を示す強度分布になる。 この中性子ビーム強度分布を適当な撮像系を用いて画像化す るのが中性子ラジオグラフィである。以下にそれぞれの構成 要素について述べる。

2.1 中性子源

中性子源としては、原子炉、加速器又は放射性同位元素が 一般的である。このうち原子炉の中性子源強度が他の2者に 比べて大であり、現在最も多くの中性子ラジオグラフィ装置 で利用されている。昨今の技術革新による加速器の性能の向 上、さらには大強度陽子加速器による核破砕を用いた中性子 源の出現等により加速器を用いた中性子源の強度も極めて大 きくなってきており原子炉と比肩、条件によっては凌駕する レベルに達している²⁾。特に核破砕反応を利用してパルス状 に中性子を発生させる場合では、原子炉を利用する場合に比 べて時間平均で同等程度、瞬間的には2桁高い強度の中性子 ビームが利用可能となっている。現在、スイス ポールシェ ラー研究所に核破砕中性子源を利用した中性子ラジオグラ フィ装置 NEUTRA³⁾があるが、中性子の発生がパルス状で ないため原子炉に設置された装置と同様の仕様となってい る。一方、放射性同位元素では²²⁶Ra-Be、²⁴¹Am-Be、²⁵²Cf 等が用いられる。その特長は前2者に比べて、軽量かつコン パクトであるため可搬性を有する中性子ラジオグラフィ装 置4)の中性子源として利用できる点である。これは、中性子 ラジオグラフィでは一般に中性子散乱のように中性子ビーム を単色化する必要がないため、強度の弱い中性子源でも利用 可能だからである。

2.2 コリメータ

中性子源から放出された中性子は、まずコリメータに入る。 コリメータの内壁は硼素、リチウム、カドミウム等の中性子 吸収材によって内張りされており、コリメータ外から侵入す る中性子や方向のずれた中性子は通過させない構造になって いる。コリメータには直管型(入口部と出口部が同形状及び 同寸法のもの)、Sollerslit型(中性子吸収材でできた小径管 束又は等間隔の平板群を挿入して中性子ビームの平行度を向 上させようとするもの)、ダイバージェント型(末広がり 型:入口部に対して出口部の面積が大きくなったもの)等の 種類があり、現在ではダイバージェント型(図2に描かれて いるコリメータも角形のダイバージェントコリメータであ る。)のものが最も多く利用されている。その理由は中性子 ビームの平行度を確保しつつ撮影位置でのビームサイズを大 きく取れることにある。コリメータの全長Lと入口等価 直径Dとの比として求められる。このL/D比が小さい場合、 条件によっては撮影された画像に半影が生じ、良好な画像が 得られない。これまでL/D比は100以上が望ましいとされ ていたが、高空間分解能撮影の必要性からL/D比500以上 の装置が出現してきている。ただし、L/D比を大きく取る ことは、Lを大きくするかDを小さくすることを意味し、い ずれにしても撮影位置における中性子ビームの強度低下をも たらすため、高強度の中性子源が必須となる。

2.3 撮像系

撮像系は、試料を透過してきた中性子ビームの強度分布を 可視化する部分である。従来から用いられてきた方法として フィルム法があるが、現在では中性子用イメージングプレー ト (N-IP) ⁵⁾で殆ど置き換えられつつある。また、蛍光コン バータ (コンバータとして蛍光を発するもの) と高感度のテ レビカメラを組み合わせることにより動的試料の撮影も可能 となる。この中性子テレビシステムは蛍光コンバータ、鏡、 撮像デバイス及び暗箱より構成される。蛍光コンバータは ⁶LiF: ZnS (Ag) を組成とするものが最も広く用いられてお り、中性子強度を可視光の強度に変換する。ただし、現在使 用されている蛍光コンバータは発光輝度が月明かり程度と微 弱であるため、超高感度のテレビカメラの使用が必要となる。 従来撮像デバイスとして、超高感度を有するSIT (Silicon Intensifier Target) 管カメラが使用されていたが、より高速 の現象を捉えるためにイメージインテンシファイア (II) を 装着した高速度ビデオカメラや高解像度を目指した冷却型 CCD (Charge Coupled Device) カメラが現在利用されてい る。中性子テレビ法の特徴は、蛍光コンバータにより光の強 度に変換された後では市販の光学機器が使用できる点であ る。

3.1 JRR-3M中性子ラジオグラフィ装置

JRR-3M中性子ラジオグラフィ装置 (JRR-3MNRF) は、 国産第一号の研究用原子炉JRR-3の改造に伴い、最新の装 置を備えた中性子ラジオグラフィ装置として平成3年度から 利用が開始された。JRR-3M NRFは大きく分けて、熱中性 子ラジオグラフィ装置 (TNRF、図3参照) と冷中性子ラジ オグラフィ装置 (CNRF) から構成される。TNRFは炉心を 取り巻くように設置されている重水タンク中に30 mm 角の 先端断面を持つビームチューブからダイバージェント型のコ リメータを用いて中性子ビームを取り出している。TNRFは 図3に示されるように2つの部屋から構成されており、一つ は高放射性の試料用の撮影室 (第1撮影室:TNRF-1) であ り、他方は、一般的な非破壊検査や中性子ラジオグラフィ実 験に使用する撮影室 (第2撮影室:TNRF-2) である。 TNRF-2には、ビームシャッタ、ダブルアクション中性子 シャッタ、コンピュータ制御可能な試料回転台、ビーム キャッチャ等が装備されており、多様な実験に対応できる。 TNRFの特性を表1に示す。

3.2 高解像度撮像システム

静止あるいは定常状態の試料を撮影するために、冷却型 CCD カメラ (1024×1024pixel, 14bit)が導入され高信頼 度の画像取得を達成している。高解像度撮像システムは図4 に示されるとおり、蛍光コンバータ、2枚の石英鏡、レンズ 及び冷却型CCD カメラから構成される。このシステムでは 放射線感受性が高い冷却型CCD カメラを試料等によって散 乱された中性子ビーム及び二次的に発生したγ線から保護す

図3 JRR-3M熱中性子ラジオグラフィ装置

図4 高解像度撮像システムの概要

表1 、	JRR-3M	TNRF	の特性
------	--------	------	-----

撮影室	中性子束	カドミ比	γ 線量率	コリ	メータ比		照射野 (mm)
	(n/cm ² s)		(Sv/h)	L (mm)	L/D	D	
TNRF-1	2.6 x 10 ⁸	81		水平* : 5426 *	138	39 *	水平: 115
	$(2.0 \times 10^8)^{**}$	(300)**		垂直*: 5497 *	115	48 *	垂直: 432
TNRF-2	1.5 x 10 ⁸	130	2.16	水平 :7286±9	185 ± 9	39 ± 2	水平: 255
	(1.2×10^8) **	(320)**		垂直 : 7357±5	154 ± 1	48 ± 1	垂直: 305

* TNRF-2の測定結果に幾何学的補正を行なった求めた値

** JRR-3Mの燃料がシリサイド燃料に移行した初期炉心時に測定した結果

がCT画像ではっきりと確認できる。

3.3 高速度撮像システム

観察対象の事象がより高速で推移する場合、従来の実時間 撮影(30フレーム/秒)では1/30秒の動きに対応するボケた 画像となり画像からの物理情報抽出の誤差要因となる。この 問題を解決するためには、1フレーム当たりの撮影時間を短 くする必要があるが、これは中性子照射量の低下をもたらす ものであり、S/Nの低下をもたらす。JRR-3M NRFにおい ては、単位フレーム当たりの中性子照射量低下に伴う輝度低 下を補うために、マイクロチャンネルプレートを2段装備し たIIが高速度カメラと組み合わされた。蛍光コンバータ上の 投影画像はレンズを通してIIの光電面に結像され、最高10 万倍まで増幅された後リレーレンズを介して高速度カメラで 撮影される。高速度ビデオカメラは4,500フレーム/秒(フル フレームモード)の撮影が可能であり、JRR-3M NRFの限 界状態での撮影が可能となる。高速度撮像システムの性能諸 元を表2に示す⁶⁾。この中では観察対象に応じた撮影速度の 選択性も考慮されている。

図5 ユリのつぼみのCT画像

4 応用分野の紹介

世界で中性子ラジオグラフィが実用的に利用されている分 野を列挙すると:1) 原子炉燃料の健全性検査、2) 宇宙開発 用各種ロケットやその起爆管、導火線等の火工品、エンジン ノズル、各種電気部品の試験検査、3) 航空機エンジンをは じめとする各種タービンブレードの検査、機体のハニカム構 造材腐食検査、4) 内燃機関内の燃料の輸送状況、潤滑油の 状態、油圧装置類中の油の挙動観察等である。これら工業分 野以外にも、美術品への応用、埋蔵文化財への応用、農業へ の応用等が挙げられる。特にヨーロッパ及びアメリカでは中 性子ラジオグラフィが日常的に工業分野で利用されているの に対し、国内での工業分野への応用は、日本製鋼所室蘭製作 所⁸⁾がラジオグラフィ検査業務を停止したことから、住重試 験検査株式会社⁹⁾でサイクロトロンを用いたビジネス利用が 行われているのみである。なお、平成18年度から日本原子 力研究開発機構において施設共用制度が開始され、中性子ラ ジオグラフィ装置の成果非公開での有償利用さらに役務の提 供も可能となり、企業にとって利用し易い環境が整った。

4.1 熱流動現象等の可視化

熱流動現象の可視化・計測には、高空間分解能、高時間分 解能を備えた非接触計測法が必要とされる。さらに熱流動研 究では、高温、高圧、高熱流束条件が求められることが多く 金属容器の使用は不可欠である。これらの問題に対し、中性 子ラジオグラフィ、特に中性子テレビ法は有力な可視化・計 測法として期待できる。可視化画像を画像処理することによ り流動様式、気泡上昇速度、液膜厚さ、速度分布、ボイド率 分布等の代表的な流動特性値が計測可能である。日本原子力 研究開発機構では、低減速軽水炉の設計研究を進めている。 低減速軽水炉の燃料棒は、中性子のエネルギーを高く保つた め三角格子状に配置され、さらに燃料棒間隙が1mm程度と 稠密であり、炉心平均ボイド率も約0.6と高いため、熱的に 厳しい状況が予想される。このため、核設計と並行して熱流

表2 高速度撮像システムの仕様

FASTCAM-ultima-UVS (フォトロン製).				
イメージセンサ		MOS タイプ		
		画素サイズ: 40 µm x 40 µm (有効エリア 80 %)		
記録速度	フルフレームモード	30, 60, 125, 250, 500, 750, 1125, 2250, 4500		
(フレーム/秒)	セグメントフレームモード*	9000, 13500, 18000, 27000, 40500		
画像サイズ	フルフレームモード	256 x 256		
(画素)	セグメントフレームモード*	256 x 128, 128 x 128, 256 x 64, 128 x 64, 64 x 64		
グレイレベル		256		

*記録速度と画像サイズは同順で対応している

動特性の評価が重要である。稠密なバンドル流路内の瞬時ボ イド率の計測や0.6以上の高ボイド率の計測は、従来法では 計測が困難であった。このため、高速度撮像法^{10,11}計測技 術を適用して、低減速軽水炉の炉心形状を模擬した稠密バン ドル流路内二相流のボイド率の時間変動量と時間平均ボイド 率が計測された。瞬間ボイド率を計測した例での撮像系の時 間分解能は2 ms、空間分解能は870 µm、計測誤差の推定値 は13%であった。

4.2 水素吸蔵合金開発への応用

水素吸蔵合金Mg₃Niに水素化処理を15分行った後、CT 法が適用された。水素は中性子に対する減衰係数(図1参照) が大きいことから良く可視化できる。Mg₃Niの試料表面に 近い位置での断層像では一様に水素が分布しており、中間位 置に相当する断層像では中心が白く縁が黒い(水素が多い) のがはっきり分かり、水素濃度の差が明瞭に分かった。これ により、水素は各断面から一様に分布しながら拡散進入して いく様子が確認できた¹²⁾。これに対してTiCrV系合金及び TiCrMo系合金では、500~600ppm程度の低濃度で水素を 吸蔵(固溶体領域)させた場合でも、表面から内部にかけて 均一に水素が分布しており、拡散は比較的速いことが確認さ れた。さらにこれらの合金を利用した超小型水素吸蔵合金タ ンク中の合金の分布について、水素吸放出口付近やタンク底 面部に大きな水素濃度分布が生じ、水素の注入・放出に伴っ てあるいは合金の膨張・収縮により合金粉末の移動が起こっ ていることが分かった¹³⁾。

4.3 農学関係への応用

農学においては植物に関連して土壌中の根の生育状況と土 壌中の水分の挙動を解明するための研究に中性子ラジオグラ フィが応用されている。図5に示されるように植物は中性子 ラジオグラフィによって内部構造をはっきりと確認できる。 これは植物の大部分が水で構成されているからであり、植物 の生育に伴う根の成長の様子を時系列的に非破壊で可視化し たり、土壌改良剤としての吸水性ポリマーの機能を根の成長 との関係で確認したり、根の生育と根近傍の土壌中の水分量 の関係を明らかにするために使用されている¹⁴⁾。

4.4 古文化財への応用

埋蔵文化財への非破壊検査としては利用しやすいX線ラジ オグラフィが一般的であるが、中性子ラジオグラフィを用い ることにより相補的な情報が得られる。具体例としては鏡に おけるひび割れ、腐食の発生状況、鉄剣の錆の発生状況、青 銅製の経筒内の内容物の確認等が挙げられる¹⁵⁾。特に金属 容器内に存在する紙、布等の有機物は中性子ラジオグラフィ によりはっきりと確認できる。図6は青銅鏡の中性子ラジオ グラフィ画像である。元々は青銅のみであるから、X線で撮 影しても中性子で撮影しても青銅の厚さあるいは密度に関す る情報が同様に得られるのみであるが、不均一な濃淡(特に 縁の部分)が画像上で確認できる。これは錆に起因するもの と推察され、中性子では錆の部分に水素が多く含まれている 場合には強いコントラスト(画像上の濃淡)がつき、そうで ない場合にはコントラストがつかない。一方、X線では水素 の存在如何に関わらずコントラストはつかない。これはひび 割れの部分にも当てはまり、画像上でひび割れと思われる部 分が黒い線として確認できるのはひび割れの部分に腐食生成 物等が存在しているものと思われる。従って、X線ラジオグ ラフィの画像と比較することによってより詳しい情報が得ら れる。

4.5 金属製品の非破壊検査

(1) アルミニウム合金製エンジンヘッドのCT

主たる構成部材がアルミニウム合金で、内筒として鉄材料 が利用されたエンジンヘッド部品にCT法を適用した。部品 の概観写真を図7に示す。図8上段が投影画像であり、白い

図6 青銅鏡の中性子ラジオグラフィ画像

図7 エンジンヘッドの概観写真

直線の位置が下段に示されるCT画像の切断位置である。投 影画像では確認できない異物の混入がCT画像の円で囲んだ 位置に確認できる。さらに、CT画像のデータを用いて別の 角度からの断層像を構築したのが図9である。上段画像上に 引かれた直線でカットされる断面が下段に示されており、形 状、寸法等の把握を容易にしている。中性子のアルミニウム に対する透過率は高く(図1参照)、自動車製品で多用される アルミニウム合金製部品の検査には最適である。ただし、内 筒に用いられている鉄材料の部分は画像を見て分かるとお り、中性子の透過率があまり高くないことを認識しておく必 要がある。

(2) ステンレス鋼製管溶接部のCT

直径4 cm程度のステンレス鋼製管の溶接状況を確認する ためCT法を適用した。試料の概観写真を図10に示す。図 11は左側に投影画像(直交方向の2枚)を右側の断層像の切 断位置とともに示している。左側下段の投影画像から溶接部 位の長さは左側が長いことが分かる。図11の断層像は切断 位置が一方の溶接部位にのみかかっていることから、右側の

図8 エンジンヘッドの投影画像とCT画像

図9 エンジンヘッドのCT画像と再構成された断層像

断層像でもはっきりと確認できる。一方図12では切断位置 が両方の溶接部位にかかっており、その様子が断層像でも確 認でき、さらに二つの溶接部位の間には空隙が残されている ことがはっきりと分かる。撮影位置を変えた透過画像からも 溶接の状況が観察できるが、CT画像により詳しくその状況 を知ることができる。

5 まとめ

中性子ラジオグラフィ装置の性能・特徴は中性子源の影響 を大きく受ける。現在は、原子炉を中心とした定常中性子源 が一般的であるが、日本原子力研究開発機構 原子力科学研 究所で建設が進められている大強度陽子加速器による核破砕 中性子源は、パルス中性子源である。そのピーク強度は JRR-3Mの100倍以上と予想され、平均中性子束においても 同程度と見込まれている。このパルス中性子源を利用するこ とにより、瞬間的な高強度中性子ビームを用いたストロボ高 速度ラジオグラフィや中性子飛行時間法を用いたエネルギー 分析型ラジオグラフィが適用可能となり、中性子ラジオグラ

図10 ステンレス製管溶接試料の概観写真

図11 ステンレス製管溶接試料の投影画像とCT画像1

図12 ステンレス製管溶接試料の投影画像とCT画像2

フィに新たな局面が開けていくものと期待される。

参考文献

- Neutron Radiography Handbook, ed. by P. von Der Hardt and H. Rotger, D. Reidel Publishing Company, Dordrecht, (1981), 20.
- Y. Oyama, S. Ikeda and JAERI-KEK Joint Project Team : JAERI-Conf 2001-002, (2001), 19.
- E. Lehmann, H. Pleinert and L. Wiezel: Nucl. Instrum. Meth. Phys. Res., A, 377 (1996), 11.
- 4) 和田延夫:日本原子力学会誌, 30 (1988), 28.
- N. Niimura, Y. Karasawa, I. Tanaka, J. Miyahara,
 K. Takahashi, H. Saito, S. Koizumi and M. Hidaka : Nucl. Instrum. Meth. Phys. Res., A, 349 (1994), 521.
- M. Matsubayashi, H. Kobayashi, T. Hibiki and K. Mishima : Nuclear Technology, 132 (2000), 309.
- 7) M. Matsubayashi, A. Tsuruno, T. Kodaira and H. Kobayashi : Nucl. Instrum. Meth. Phys. Res., A, 377 (1996), 107.

- 8) 戸田陽二郎:原子力工業, 41 (1995) 2, 57.
- 9)西原善明, 垂水裕司, 尾崎正和, 柿平将次, 田沢修一, 中新威彦:原子力工業, 41 (1995) 2, 60.
- (10) 呉田昌俊,日引俊,三島嘉一郎,秋本肇:日本機械学 会論文集,B編,67 (2001) 653,179.
- (11) 呉田昌俊,日引俊,三島嘉一郎,秋本肇:日本機械学 会論文集,B編,67 (2001) 661, 2295.
- 12) H. Sakaguchi, A. Kohzai, K. Hatakeyama, S. Fujine,K. Yoneda, K. Kanda and T. Esaka : Int. J. Hydrogen Energy, 25 (2000), 1205.
- M. Matsubayashi, T. Ebisawa, K. Kubo, H. Arashima and H. Itoh : JAERI-Review 2005-045 (2005), 165.
- 14) T. M. Nakanishi and M. Matsubayashi : J. Plant Phys., 151 (1997), 442.
- 15) 増澤文武,村田忠繁,尾崎誠,米田憲司,岡本賢一, 辻本忠,横島勝則,安田章:第1回放射線シンポジウム 講演論文集,(1995),146.

(2007年1月30日受付)