

静的・動的フェライト変態機構に関する最近の解析

A Recent Study on Static/Dynamic Austenite-to-Ferrite Transformation in Steels

足立吉隆 Yoshitaka Adachi 友田 陽 Yo Tomoda

(独)物質・材料研究機構 新構造材料センター 金相グループ 主幹研究員

茨城大学 大学院理工学研究科 応用粒子線科学専攻 教授

」 緒言

この10年間あまりは日本の国家プロジェクト (スーパー メタルPJ、超鉄鋼PJ、プロテウスPJ)を発端として、全世 界的に超微細粒鋼研究の隆盛期であった。超微細粒化は、必 要最小限の合金元素添加で高強度と高靭性を確保することが できることが最大の利点であるが、これに加えて析出物など の第二相の微細分散化のための下地組織としてや、粒径を制 御することにより一つの鋼種で様々なグレードの材料が得ら れるなどの工程上の利点など、鉄鋼材料にかかわる産学官の 多くの研究者、技術者がそれぞれ異なる次元で魅力を感じ今 もなお永遠の課題として取り組んでいる課題である。超細粒 化のための新しいメタラジーの概念の構築が精力的に進めら れてきたのと並行して、工業化への取り組みのための国家プ ロジェクトも進められ、真に鉄鋼材料関係者が一体となって 本課題に挑戦してきた。一部ではすでに粒径3µmの熱間圧 延鋼板が実機で製造されている。最先端を走ってきた研究開 発も今新たな時期を迎えようとしており、一つの研究の流れ は必要最小限使った合金元素の役割の徹底的な有効活用、小 歪で超細粒鋼を得るためのメタラジーの探索といった高効率 超微細粒化に関する研究であり、いま一つの流れは超細粒鋼 の用途を探るための基礎研究として変形特性に関する研究が 進められている。本稿では、超微細粒化メタラジーの潮流と 原理、それを解析するために新たに使われ始めた解析手法に 焦点を当て、超微細粒鋼研究の現状を概観する。

2 超細粒化の潮流と原理

超細粒化を可能とするプロセスは大きく分けて二つあり、 ①変態後の組織(フェライトやマルテンサイト)を超強加工 (例えば歪3以上)する方法【超強加工ルート(Sever plastic deformation route)】と、②変態前の母相(オーステナイト) を強加工(例えば歪1程度)する方法【変態ルート(Transformation route)】に大別される(Fig.1)。超強加工ルートには 更に、加工と再結晶が交互して繰り返し生じる動的不連続再 結晶と、加工のみで元の粒が分割して微細粒が生じる動的連 続再結晶(粒分割)ルートがある。いずれも温度補償歪速度 因子(Zener-Hollomon因子(Z=exp(Q/RT))が大きいほ ど微細粒化するが、Z値と粒径の関係の勾配は再結晶機構の 違いによって異なることが報告されている¹⁾。一方の変態 ルートには、加工と変態が交互して繰り返し生じる動的変 態²⁻⁴⁾と、変態前の母相域での加工のみの静的変態ルート^{5,6)} がある。以下では、紙面の都合上変態ルートに焦点を当てて、 超微細粒化プロセスの特徴と原理について簡潔に述べる。超 強加工による微細粒化については優れた解説^{1,7)}が他にある ので参照されたい。

2.1 動的変態による超微細粒化

2.1.1 動的変態の速度論的特徴

変態ルートでフェライト結晶粒径を微細化するにあたって 重要な点は以下の四点である (Fig.2)⁸⁾。【1】母相オーステ ナイトにフェライトの核生成サイトとなる種々の仕組みを入 れる。ここでいう仕組みとはオーステナイト結晶粒径を小さ くする、転位組織を導入する、第二相を利用することである。

中でも加工により転位組織を導入することは、フェライト結 晶粒の微細化に最も効果的である。【2】上記核生成サイトの 能力を上げる(例えば大角粒界化、変形下部組織の方位差増 加など)、【3】核生成サイトが有効化するように駆動力(過冷 度)を高める、【4】変態したフェライトの粒成長を抑制する (低温保持、第二相の利用、ハード・ソフトインペンジメン トの利用など)。これらの点は式では次のように表すことが できる。

 $d_{\alpha} = 0.91 (V/I)^{1/4}$

ここでd_aはフェライト粒径、Vはフェライトの粒成長速 度、Iはフェライトの核生成速度である。フェライト粒径を 小さくするためにはV/Iの比をできるだけ小さくすることが 必要である。ここでIは次式で表わされる。

	$-Q_{D}$	N Zowo	$(-\Delta g^*)$
$1 - N_0 \exp($	kT	$/N_v Zexp$	kT /

上式中のN_vは核生成サイト数、∆gは駆動力である。し たがってフェライトの核生成速度を増すためには、オーステ ナイト中の核生成サイト密度を高め、そして駆動力(過冷度) を増すことが必要となる。以下に述べる動的変態は過冷オー ステナイト域での加工中に変態が生じるので、核生成サイト 数および過冷度両方を増すのに都合がよい変態機構といえ る。そこでまず動的変態機構の特徴について以下に述べる。

Ar3点直上の未再結晶オーステナイト域で加工すると、加 工中にフェライト変態が生じる場合がある^{2,3)}。このような 加工中の変態を動的変態と呼ぶ。特に焼き入れ性が低い鋼種 で動的変態は生じる。動的変態をうまく利用すると、本来ベ イナイト変態が生じる500℃近傍の過冷オーステナイト域で 加工することにより、ベイナイト変態に代わってフェライト 変態が生じる(Fig.3a)⁴⁾。この加工を受けた過冷オーステナ イトから変態したフェライトの粒径は1μm程度となる。こ

Fine-grained ferrite

の超微細化は①低温加工により導入された核生成サイト能の 高い転位下部組織と、②過冷により変態の駆動力が増すと いった二つの理由が相乗した結果と理解される。低温オース テナイト域での加工で導入された転位下部組織はマイクロバ ンドと呼ばれ、絡まりあった転位で構成される二枚の近接し た転位壁 (透過型電子顕微鏡 (TEM) で観察して初めて二枚 の転位壁の存在が分かるが、ここでは二枚の転位壁をまとめ てマイクロバンド界面と呼ぶことにする)がほぼ {111}。に 沿って形成する⁹⁾。マイクロバンドの幅は歪、加工温度、 オーステナイト粒径によって変化し、歪が高いほど、加工温 度が低いほど、オーステナイト粒径が小さいほど小さくなる、 すなわちマイクロバンド密度は増加する (Fig.4) ^{5,9)}。なお、 fcc相の変形挙動や変形組織は積層欠陥エネルギーに大きく 依存するので、Fig.2では低炭素鋼のオーステナイトと積層 欠陥エネルギーがほぼ等しくかつ室温までfcc 構造が安定な 70Ni-30Fe合金を用いて、室温で変形下部組織を観察して いる。

未再結晶オーステナイト域であっても800℃以上の高温 オーステナイト域加工では転位セル組織が形成する。隣接し たマイクロバンド間の方位差が2-3度以上である場合が多い のに対して、転位セルの方位差は1度未満である場合が多く

Fig.3 CCT diagram of (a) low and (b) high quench hardenability steels

- [1] Increase of nucleation sites
- [2] Increase of potential of nucleation sites
- [3] Increase of driving force
- [4] Suppression of grain growth

Fig.2 Principle to obtain fine ferrite grains⁸⁾

観察される。転位セルに比べてマイクロバンドが高い核生成 サイト能を有する理由はこの方位差の違いによるものと考え られる⁹⁾。

ところで以上の説明では、変態機構の違い(静的あるいは 動的)が変態フェライト組織に及ぼす影響については述べて いない。ここで静的変態と動的変態の違いを整理すると Fig.5のように示すことができる。静的変態の場合はオース テナイト域で加工が終わったのちにフェライト変態が始ま る。したがって変態フェライト組織は変態前加工の影響のみ を受ける。一方動的変態の場合は、オーステナイト域加工中 にフェライト変態が生じることが特徴で、したがって変態 フェライト組織は変態前の加工のみならず変態後の加工の影 響を受けることになる。この変態後の加工が最終組織に及ぼ す影響を理解することが、動的変態機構をより理解する上で

Fig.4 Dislocation substructures in Ni-30Fe alloy⁹⁾

(a) Static transformation Deformation Transformation Pre-trans. deformation Austenite (b) Dynamic transformation Deformation Transformation (as deformed) Pre-trans. deform Pre-trans. deform Pre-trans. deform Austenite Austenite Austenite Austenite Austenite Austenite

Fig.5 Comparison between static and dynamic transformation

オーステナイトとフェライト間の歪分配に及ぼす加工温 度、フェライト体積率の影響をその場中性子線回折で調べた 結果をFig.6に示す¹⁰⁾。ここで用いた供試材は0.2C-2 Mn-(0.03Nb) 鋼 (mass%) である。900 ℃でのオーステナイト 化に引き続き、640℃あるいは680℃で等温保持しこの間に フェライト変態を部分的に生じさせた後に25%の圧縮加工 (歪速度0.1/s)を施し、更に同じ温度で等温保持する間の中 性子線回折ピークプロファイル*1を測定した¹⁰⁾。加工直前 のフェライトの体積率は加工前の等温保持時間を変更するこ とにより制御した。オーステナイトーフェライト二相域で加 工すると、今回測定したオーステナイトの3つの回折面から のピーク強度が急激に減少するとともに、フェライトの3つ の回折面からのピークの内2つのピーク強度が増す一方で残 り1つのピーク強度が減少した。この結果は、二相域加工に より加工歪がオーステナイトに導入されフェライト変態が促 進したことを示唆するとともに、加工歪がフェライト中にも 導入され変形集合組織が発達することを示している。更に、 Fig.6を元にして求めたオーステナイト及びフェライトの体 積率変化*2の解析結果 (Fig.7) によると、680 ℃で加工した 場合よりも640℃で加工した場合の方が、加工に伴うフェラ イトの体積率増加量が大きい。これは、同じ二相域でも低温 で加工した場合の方が加工歪がよりオーステナイトに集中し やすいことを示唆しているものと考えられる。実際、同時に 測定した応力歪曲線 (Fig.8) をみると、680℃で加工した場 合には加工前の等温保持時間を長くする (すなわちフェライ トの体積率を増す)と流動応力が低くなるのに対して、 640℃では高くなる傾向が認められる。この結果も二相域で の加工温度が高いと加工歪はフェライトに集中するのに対し て、低温ではフェライトよりもむしろオーステナイトが主に 塑性変形していることを示唆しており、中性子線回折の結果 と一致している。フェライトに加工歪が集中した場合にはや がて動的再結晶が生じることが想像され、最終的に得られる フェライト組織は主に動的再結晶により生じたフェライト組 織になるものと考えられる。一方、オーステナイトに歪が集 中した場合には変態で生じたフェライトが主組織になるもの と思われる。実際の動的変態では動的変態とそれに引き続い て起こるフェライトの動的再結晶が同時に起こっている可能 性がある。ただ上記結果は、低温加工になるほど動的変態が 動的再結晶よりも支配的になっていることを示唆している。

*2 リートベルト解析結果で、集合組織補正をした全回折ピークー括フィティングの結果による体積率

17

重要となる。これは言い換えれば、オーステナイトーフェラ イト二相域加工時の組織変化を理解することが必要というこ とになる。

^{*1} シングルピークフィッティングの結果による体積率

また歪速度が極端に小さい場合は、動的再結晶が超微細粒化 の支配的な機構となることが指摘されている¹¹⁾。

オーステナイトに歪が集中する場合の相変態挙動につい て、更にその場中性子線回折で調べた結果をFig.9に示す¹²⁾。 中性子線回折施設に熱間圧縮装置を敷設し、0.2C-2 Mn (-0.03Nb) 鋼を用いてオーステナイト域の700℃で25%の 圧縮加工後、冷却途中でのフェライト体積率変化を測定した。 加工は変態を促進するが、変態が進むにつれてその加工によ

Fig.6 Change in peak integrated intensity. Nb-free steel, measured at 640 $^\circ C$ 10

Fig.7 Effect of deformation on ferrite transformation evolution. Nb-added steel at 640 °C 10)

る促進効果は小さくなることが分かる。この理由としては、 最初に導入した核生成サイトの全てが変態時に消費されサイ トサチュレーションが生じたことによる、あるいは変態の進 行に伴いオーステナイト中の炭素濃度が上昇したことによ る、などが考えられる。加工による促進効果が消失したとこ ろを見計らって二回目の加工を加えると、再度フェライト変 態が促進されるという結果が見出されている (Fig.10)¹³⁾。 このような二相域での加工が繰り返し加えられているのが動 的変態の特徴である。

以上の結果をまとめると、動的変態が生じるような低温域 では歪がオーステナイトに優先的に、しかも連続的に導入さ れ、フェライト変態が繰り返し促進されるものと考えられる。

Fig.8 Effects of temperature and ferrite volume fraction on flow stress of Nb-added low alloy steel : (a) 640 $^{\circ}$ C; (b) 680 $^{\circ}$ C; (c) flow stress comparison between two temperatures $^{10)}$

また一部の変態フェライトはその後の加工により動的再結晶 している可能性がある。

2.1.2 動的変態の結晶学的特徴

たとえ核生成速度が高くなっても、近接して生成したフェ ライトの結晶方位が同じ場合、それらは合体し粗大粒となる。 動的変態の場合、オーステナイトーフェライト二相域での加 工で歪が界面のオーステナイト側に集中しオーステナイトの

Fig.9 Effect of prestrain on ferrite transformation kinetics 12)

Fig.10 Effect of double hit deformation on ferrite transformation kinetics ¹³⁾. Nb-free steel

Fig.11 Comparison in the distribution of the deviation angles from the plane/direction parallel orientation relationships. Ni-43Cr alloy ¹⁴⁾

結晶方位回転が生じ(Fig.11)¹⁴⁾、その後新たに生成する フェライトが結晶回転後のオーステナイトと方位関係を有し て生成するので、近接して生じたフェライトの結晶方位が異 なることになり、隣接粒間の合体による粗大化の機会は減少 すると考えられる。すなわち動的変態ではバリアント規制が 緩和されると推定される。

2.2 静的変態による超微細粒化

動的変態のところで述べたように、第一にフェライトの超 微細粒化に重要な点は、高い核生成サイト能(大きな方位差) の転位下部組織を均一に微細分散することである。付加的に 動的変態の特徴(例えば、歪が繰り返し導入される、変態 フェライトの方位が分散するなど)はあるものの、超微細粒 化に変態機構の違い(動的か、静的か)は大きな意味を持た ないものと思われる。実際に、静的変態で超微細粒化を達成 した二つの場合を説明する。

焼き入れ性が高い鋼種の場合、加工によるフェライト変態 の促進効果が低焼き入れ性鋼と同様に生じても、変態が加工 中に生じるまで促進されることはない¹⁵⁾。結果として、オー ステナイトの低温域で加工後冷却するとオースフォームドベ イナイトや、オースフォームドマルテンサイトが生成する。 ところが、低温オーステナイト域で加工後、再昇温しその後 徐令すると、粒径1.5 mmの超微細フェライト粒が生成する (Fig.3b)⁵⁾。この場合変態は最終冷却時に生じているので静 的変態であり、この結果は低温オーステナイト域で加工する ことが超微細粒の生成に重要であることを示唆している。

異なる例として、安定オーステナイト域 (動的変態が生じ ない比較的高温の未再結晶オーステナイト域) で多段高速圧 延を施し、加工パス時間を可能な限り短くし、加えて加工後 一定の温度にまで冷却する時間を極力短時間にして転位の回 復を抑制しようという試みがなされ⁶⁾、1µm程度の超微細 粒が生成するといった結果も近年報告されている。ここでも 変態機構は静的と考えられる。短時間パス熱間圧延により導 入される転位下部組織は転位セルであることが報告されてお り上に述べたマイクロバンドとは異なるが、変形下部組織の 形態の違いよりも、方位差に注目すべきと思われ、多段高速 熱間加工により導入された隣接する転位セル間の方位差測定 が望まれる。

23 超微細粒フェライトを得るための 臨界歪軽減手法

超微細粒フェライトを得るためには変態ルートおよび超強 加工ルートともに、比較的大きな歪が必要である。この臨界 歪を小さくしたいという要望は当然である。そのために検討 されている手法をTable.1に示す。

超強加工ルートによる超微細粒化の初期組織はこれまで フェライトや、オーステナイトなどの単純な組織が利用され てきた。初期組織フェライトを1µmまで微細粒化するため にはより高Z値での加工が必要となるが、その場合臨界歪は 増加する。SCM440鋼の場合、加工条件500℃、0.01 s⁻¹ (logZ=15.3) で全面超微細粒フェライトを得るためには歪 $\epsilon = 4$ が必要であることが示されている¹⁶⁾。超微細粒化のた めには材料中にできるだけ多くのGN転位を導入することが ポイントであり、そのために超強加工が施されているわけで あるが、より有効にGN転位を蓄積する手法として初期組織 にマルテンサイトを利用する方法が検討され始めてい る¹⁷⁻²⁰⁾。マルテンサイト組織を50%(ε=0.8)冷間加工後、 短時間焼鈍する静的再結晶法でも180nm径の微細粒が得ら れることが報告されている¹⁸⁾。500 ℃の温間域で ε = 0.26 程 度の加工により1µm径以下の微細粒が部分的ではあるが生 成した例も知られている (Fig.12)¹⁹⁾。この場合、著者らは 超細粒化の機構が連続再結晶であると考察している。この温 間域での小歪加工による超微細粒化は、特に材料中に炭素が 含まれている場合に、より小歪加工で超微細粒化が生じ る¹⁸⁻²⁰⁾。よって、超微細粒を得るために必要な高Z域加工 (低温、高歪速度)であっても、小歪加工で超微細粒が得ら れるという大変興味深い結果がほぼ同時期に異なる研究グ ループから報告されている。その微細粒化促進機構について は、初期組織マルテンサイト中に含まれるパケットやブロッ クが微細であることに起因するという考え方や、高い初期転 位密度、固溶炭素による変態転位の固着、第二相 (残留オー ステナイト、セメンタイト) 周辺での局所的な歪蓄積効果の 向上、第二相による粒成長の抑制などが提案されているが、 まだ統一した見解には至っていない。

一方の相変態ルートでも、超微細粒化に必要な歪を一層小 さくするための努力が続けられている。一つは母相オーステ

Table.1 Potential methods to reduce a critical strain to realize ultra-grain refinement

相変態ルート	超強加エルート	
────────────────────────────────────	マルテンサイトを初期組織として利用 ⁽¹⁸⁾⁻⁽²⁰⁾	
多軸加工 ⁽²³⁾		
パス間時間の短縮 ⁽⁶⁾ 、パス間冷却 ⁽²⁴⁾ 、圧延直後冷却 ⁽²⁴⁾		

Fig.12 Grain size of dynamically recrystallized grains as a function of the Z parameter

ナイト粒径を微細化する方法^{4,22)}であり、析出物の利用によ るピンニング効果を使った手法、オーステナイトの動的再結 晶を使った方法²²⁾が報告されている。これらの母相オース テナイト粒の微細化は凝固過程にまで遡って組織制御が求め られる課題であり、現在高温プロセス関連で検討が進められ ている。もう一つはプロセスの面からのアプローチであり、 オーステナイト域での多段熱間加工時の加工パス時間をより 短くし、加えて加工後一定の温度にまで冷却する時間を極力 短時間にして転位の回復を抑制しようという試み6)であり、 オーステナイト域でのより高温域での加工でも超微細粒を得 ることができるという点で工業的価値がある成果である。多 軸加工により同じ等価歪であってもより広い面積に歪を導入 できるという結果も報告されている²³⁾。これらの知見(短時 間パス圧延、直後急冷(およびパス間冷却)、異型ロール圧 延による複雑な歪経路)を巧みに実機に反映した生産ライン が既に稼働しており、工業的規模で3μm径の微細粒フェラ イト鋼が製造されるようになっている²⁴⁾。

4 未解決の課題

動的変態による微細粒化機構に焦点を当て、これまでに報 告されている結果を概観した。しかし未だに次の二点が未解 決のまま残されている。

- ・動的変態が生じる過程では二相域で加工されているので、 フェライトは転位を含み、また扁平粒になっていてもよいと思われるのに、実際には動的変態で生じた微細粒は内部に転位を含まず(あるいはわずかしか含まず)、また等軸である。なぜか?
- ・動的変態で生じた微細粒の粒径は1µm程度であることが 多く報告されている。粒径を決定している因子は何か?

動的変態で生じた微細粒フェライト粒は引き続き動的再結 晶し、そのZ因子に相応した粒径が1µmであるため、フェ ライト粒内の転位密度は比較的低く、1µm程度の等軸微細 粒となるというモデルが提案されている¹¹⁾。一方、過冷 オーステナイト域で加工した場合、変形下部組織の方位差が 比較的大きく、かつその間隔が1µm以下であるため、そこ から短時間の間に一斉に核生成したフェライト粒は3次元的 にハードインピンジメントにより粒成長が抑制され1µm程 度の等軸粒が生成するということも考えられる。より過冷さ れたオーステナイトの加工中に動的変態が生じる場合、加工 歪はオーステナイト、(動的変態した)フェライトの両相に 加わるものの、オーステナイトの方に歪が集中しやすいため、 フェライト中の転位密度が低くなるという説明も可能であ る。今後、高温二相域での変形挙動の更なる検討が必要であ る。その際に、時分割能を改善したその場中性子線回折によ る平均的な情報の取得とともに、得られた微細組織の詳細な 解析が求められる。

超微細粒が生成するルートには、超強加工ルートと相変態 ルートがあり、いずれも動的あるいは準動的な組織変化が生 じることを述べた。この変形下で生じる組織変化を直接捉え たいという要望は当然であり、高温変形中のその場中性子線 回折法やその場電子線後方散乱法(EBSD)が今後組織形成

機構のより一層の理解に益々有効になるものと思われる。

謝辞

本稿を執筆するにあたり、多くの方々にご協力をいただき ました。特に、動的変態機構について議論していただいた Deaking Universityの Peter Damian Hodgson 教授、Beladi Hossein博士、スーパーメタルプロジェクトメンバー各 位、超鉄鋼プロジェクトメンバー各位、また特に中性子線回 折実験に精力的に取り組まれた茨城大学P.G. Xu博士、M.S. Koo氏、Rutherford Appleton Laboratory (UK)の E.C. Oliver博士、Nuclear Physics Institute (Czech Republic) のDr.P. Lukáš博士、動的再結晶組織に及ぼす初期組織マル テンサイトの研究を中心になって遂行された中国鋼鉄研究総 院のY.Z. Bao 博士に厚く謝意を表します。

参考文献

- 酒井拓:結晶粒微細化への新アプローチ,日本金属学 会セミナーテキスト,(2000),83.
- H. Yada, Y. Matsumura and T. Senuma : Thermec '88, ed. by I. Tamura, ISIJ, (1988), 200.
- P.J. Hurley1, P.D. Hodgson and B.C. Muddle : Scripta Materialia, 40 (1999), 433.
- 4) Y. Adachi, T. Tomida and S.Hinotani : Tetsu-to-

Hagane, 85 (1999) 8, 620.

- 5) Y. Adachi, M. Wakita, B. Hossein and P.D. Hodsgon : Acta Materialia, 55 (2007) 14, 4925.
- 6) K. Miyata, M. Wakita, S. Fukushima, N. Imai, M. Yoshida and T. Tomida : CAMP-ISIJ, 17 (2004) 6, 1388.
- 7) N.Tsuji : Tetsu-to-Hagane, 88 (2002) 7, 359.
- 8) 牧正志:金属, 71 (2001) 8, 771.
- Y. Adachi, T. Tomida and S. Hinotani : ISIJ Int, 40 (2000), s194.
- 10) P.G. Xu, Y. Tomota, E.C. Oliver, Y. Adachia and T. Kamiyama : Proc. of Conference on Stress Evaluation (MECA SENS VI), Vienna Austlia, September 2007, 99.
- 11) H. Beladi, G.L. Kelly and P.D. Hodgson : International Materials Reviews, 52 (2007) 1, 14.
- 12) P.G. Xu, Y. Tomota, P. Lukas, O. Muransky and Y. Adachi : Materials Science and Engineering, 435-436 (2006), 46.
- 13) M.S. Koo, P.G. Xu, Y. Tomota, V. Davydov, O. Muransky and P. Lukas : Proc. of Conference on Stress Evaluation (MECA SENS VI), Vienna Austlia, September 2007, 98.
- 14) Y. Adachi and K. Tsuzaki : ISIJ Int, 45 (2005) 11,

1703.

- 15) Y. Adachi, T. Tomida and S. Hinotani : Tetsu-to-Hagane, 85 (1999) 9, 691.
- S.V.S. Narayana Murty, S. Torizuka and K. Nagai : Materials Science and Engineering A, 410-411 (2005) 25, 319.
- 17) A. Ohmori, S. Torizuka, K. Nagai, N. Koseki and Y. Kogo : Mater. Trans., 45 (2004), 2224.
- 18) R. Ueji, N. Tsuji, Y. Minamino and Y. Koizumi : Acta Materialia, 50 (2002) 16, 4177.
- 19) Y.Z. Bao, Y. Tomota, T. Suzuki and Y. Adachi : Scripta Matererialia, 53 (2005), 1471.
- 20) B. Poorganji, T. Yamaguchi, G. Miyamoto, T. Furuhara and T. Maki : CAMP-ISIJ, 20 (2007), 508.
- 21) N. Tsuji, Y. Matsubara, T. Saito and T. Maki : J Jpn Inst Met, 62 (1998), 967.
- 22) E. Yasuhara, K. Seto and K. Sakata : Tetsu-to-Hagane, 89 (2003) 2, 87.
- 23) S. Torizuka, T. Inoue and K.Nagai : Tetsu-to-Hagane, 86 (2000) 12, 801.
- 24) R. Kurahashi, I. Chikushi, T. Morimoto and J. Yanagimoto : CAMP-ISIJ, 14 (2001) 4-6, 1157.

(2007年10月4日受付)