

超微小試験片を用いた機械的特性評価法とその応用

Mechanical Properties Evaluation Method using Ultra-microsizedspecimen and its Application

> 肥後矢吉 Yakichi Higo

東京工業大学 精密工学研究所 先端材料部門 教授

し はじめに

超微小試験片は「微小でなければできないか、あるいは微 小である必要がある材料」を評価するためのものである。こ の微小という言葉には1次元の微小化(薄膜)、2次元の微小 化(細線)と3次元の微小化がある。1次元と2次元の微小化 された材料の評価法は既に標準化 (規格化) されたものがあ る。3次元の微小化は粉末など単純な形状の物が知られてい る。しかし、近年半導体製造技術を駆使してマイクロあるい はサブマイクロの複雑な3次元形状を加工することが可能と なった。これを利用してMEMS (Micro-Electro Mechanical System) と呼ばれるマイクロのメカトロニクスデバイスの製 造技術が発展した。これは薄膜を積層してマイクロ寸法の可 動部を持つ微小な機械と電子回路を Si 基板上に集積するも ので、半導体の次の分野として盛んに研究されている。携帯 電話に組み込まれている GPS、3 次元加速度センサー、ジャ イロスコープやスイッチなどからプロジェクター用の結像素 子、赤外線画像センサーからゲーム機に至るまで多くが既に 実用化されている。これらの微小機械の部材寸法は数十ミク ロンであり、一般の機械部品の1/1000から1/10000である。 しかも、一般にフォトリソグラフによる微小形状のパターニ ングとスパッタ、エッチングを繰り返して作成される。その ため、同一化学組成の物質であってもバルクの材料とは特性 が異なることが多い。しかも、微細化に伴って表面積の体積 に占める割合が極端に大きくなる寸法効果と言われる現象を 伴っており、弾性定数や機械的特性など多くの物理定数が見 かけ上変化する。また、従来の材料では無視できる欠陥も強 度、特に疲労強度などの耐久性に大きく影響するようにな る。従って従来得られている材料定数もプロセス条件によっ て変化するため、MEMSを設計するのに必要な材料定数か ら耐久性まで新たに求める必要が出てきた。しかし、従来の ような材料試験機や試験方法は存在せず、ましてや ISO や IEC などの関連する国際規格もJIS や ASTM などの国内規 格も無かった。

そこでこれらの材料や微小な部材を評価するための試験機 から試験方法、更には国際規格を新たに作る必要が出てき た。ところがこのような超微小寸法の材料試験機、試験方法 と国際標準ができ上がってくると、従来の材料試験方法では 組織の集合体としてしか求められなかった材料の特性を微小 な単一組織のみを取り出し、純粋な単一組織の特性を求める ことが可能になってきた。

本解説は超微小寸法試験片を評価する試験機と試験方法 をトピックスを例に挙げて概説するとともに、従来材料の研 究への応用例を示す。

2、試験片と試験機

超微小寸法試験片の1例をFig.1に、この試験片を人の髪 の毛と比較したものをFig.2に示す。試験片の形状は長さ 50μm、幅10μm、厚さ12μmの片持ち梁で、MEMSデバ イスの可動部品を模擬する。これは、通常サイズの曲げ試験 片(たとえば、シャルピー試験片)の約1/1000の大きさであ る。試験片には固定端から10μmの位置に切欠底半径0.25μm の切欠が入れてある(この切欠半径も、標準シャルピー試験 片の切欠底半径である0.25mmの1/1000としている)。この ような寸法の試験片の引張試験、疲労試験、破壊靱性試験 から高温や腐食疲労などの環境試験を従来の材料試験と同様 に行う試験機と試験方法が存在しなかった。そこでFig.3に 示すような従来の万能材料試験と疲労試験が行える微小試験 片用の万能材料試験機と試験方法を開発した。試験機の仕 様をTable1に示す。

この試験機は3方向からCCDカメラで試験片の位置を確認しセットするとともに3000倍のCCDカメラ画像を処理することにより試験片のひずみを計測する。本装置の一番目の

Fig.1 Micro-sized cantilever type specimen with notch

Fig.2 The micro sized specimen showed in Fig.1 compare with human hair for demonstrate the size difference

Fig.3 Testing machine for micro sized specimen with almost same function as traditional machine for mechanical properties; (a) photograph of Equipment and controller, (b) actuator and stage with load cell and (c) block diagram of the test machine

Table 1 Speculation of testing Machine for micro-sized specimen

位が計測
- 具 + 恭重 · 100-N (ロービナルの 内協に ト h 0LN ま で可能)
・ 敬人何重: 100mx (ロートビルの父換により2kNまで可能) ・ 荷重分解能: 100 µN (最大荷重の1/1000)
 ・最大変位: ±10µm (アクチュエーターの交換により±100µm以上)
・変位分解能: 5nm以上(アクチュエーターの交換により最大0.5nm)
 ・ 引張、 上縮、 曲げ 負 何 か 可 能 ・ ・ ・ ・
・変位制御、荷重制御試験が可能
 ・試験片の取り付けならびに負荷位置調整のために精密な位置決め機構を 有する
 試験片の把持ジグがFIB, SEMと共通
・高温ならびに環境試験が行える

特長は、試験片のホルダーにある。本試験装置では、TEM 用の3mmの円盤をジグに取り付け、試験片の加工、材料試 験、試験後の SEM、TEM 試料作成から観察までの一連の 過程を、試験片ホルダーを共有化することにより試験片を一 度取り付ければその後取り外すことなく、すべての評価が行 えるようにしている。二番目の特長は、精密な位置合わせ機 構である。ミクロンサイズの微小試験片に対して精度の高い 材料試験を行うためには、荷重負荷位置を正確に合わせる必 要がある。これを実現させるために、試験片ホルダーを繰り 返し位置決め精度0.1µmの精密X-Yステージに取り付け、 これによって試験片の位置合わせを実現している。試験機は 熱膨張と床振動の影響を取り除くため、黒御影石の定盤を防 振装置の上に載せた構造となっている。さらに、室内のわず かな空気の流れによる荷重計測誤差を防ぐために、試験は風 防箱の内部で行われる。これにより、きわめて精度の高い微 小材料試験が可能となっている。この試験機により引張試 験、曲げ試験、破壊靭性試験、疲労試験、高温試験、腐食 疲労試験など通常の材料試験機で行われている材料の機械 的特性の評価が可能である1-4)。

本試験機による機械的特性を求めたものとして数ミクロン の結晶粒を持つ304ステンレス鋼の疲労試験等がある¹⁻³⁾。 ここでは特に破壊靭性試験においてFig.1に示した先端曲率 半径が0.25µmのノッチを導入した試験片と亀裂先端に疲労 予亀裂を導入した場合を比較をした結果を示す⁴⁻⁶⁾。材料は 等方等質と考えられるNi-12%Pアモルファス合金である。

疲労予亀裂はFar Field Compression 法を用いて導入した。この手法は、Fig.4に示すように切欠のついた試験片に対して、試験片長手方向から繰り返し圧縮荷重を負荷すると切欠先端近傍のみが亀裂が閉じて塑性変形し、除荷すると切

Fig.4 (a) Introduction of fatigue pre-crack by far-field cyclic compression technique (b) Fracture toughness test by bending 欠先端以外のひずみは零となる。そのため、切欠先端部は周 囲から亀裂が開口する力を受けることになり、き裂先端には 繰り返し引張応力が加わり、モード I の疲労き裂が導入され る。Fig.5 に試験片と導入時の写真を示す。疲労予亀裂を導 入した後は試験片を 90 度回転して倒し、曲げ荷重を負荷す る。破壊した試験片の SEM 写真を Fig.6 に示す。試験結果 の荷重 - 変位曲線を Fig.7 に示す。試験片の寸法が小さく なっても疲労予亀裂の効果は明瞭であり、亀裂先端の曲率半 径が小さくなっても試験片寸法が相対的に小さくなった場合 はノッチはやはりノッチであり、自然亀裂としては扱えな い。

このような試験を行った結果、試験片寸法が相似形で縮小 された場合は材料力学や破壊力学で求められる応力場計算な どは数ミクロンまでは適用できるようであり、破壊特性の評 価に関しては、ミクロンサイズまでは破壊力学的な考えが適 用できることが示された。しかしながら、き裂先端の塑性域

Fig.5 Cyclic compression load added to micro-sized specimen

Fig.6 Specimen appearance after fracture test

サイズは、降伏応力とき裂先端の応力拡大係数(K)値のみ で決定され、試験片の寸法に依存せずに決まる。このこと は、通常サイズ材料では小規模降伏状態を満足できる材料で も、ミクロンサイズでは寸法条件を満たすことがきわめて困 難になる場合があることを示している^{5,6}。

4 超微小試験片の 従来材料研究への応用

材料の強度や耐久性の研究は理論的な材料設計に基づい て行われてきた。しかし、材料の破壊は材料の大きさにかか わらず材料中で最も弱い一点からおきる。たとえば疲労破壊 に例をとれば Fig.8 に示すように材料を疲労試験し、破壊後 に疲労源を SEM 等で求め、分析し原因を同定する。このよ

Fig.7 Load-displacement curve for micro-sized specimen with a notch only and with a fatigue pre-crack specimen The fracture loads are 10.7 mN for with notch only and 6.4 mN for with a pre-crack specimen

Repeating defect removal and fatigue tests.

Fig.8 Development of materials are repeat of fracture source investigation and its removal

うな原因となる欠陥を除いても新たな欠陥が見つかる。材料 は次第に改良されてくるが、常に「疲労試験→原因の究明→ 欠陥の除去」の繰り返しである。これは大きな試験片では試 験片中に複雑な組織が大量に存在するため平均的な結果しか 得られず、破壊の原因となる欠陥そのものを直接試験するこ とにより欠陥となるものの特性を定量的に求めることができ ないためである。従って結晶粒界の粒界すべりと粒内すべり の関係、ラメラー組織のラメラー間あるいは析出物と母相間 の剥離強度などを直接その部分だけを試験し材料設計やシ ミュレーションに必要な純度の高い定量化された情報を得る 必要がある。このような目的で超微小試験片が応用され始め ている。ここでは幾つかの研究例を紹介する。

4.1 Ti-AI 耐熱合金のラメラー組織の強度⁷⁻⁸⁾

Ti-Al 耐熱合金は Fig.9 (a) に示すようなラメラー組織であ る。本研究に用いたラメラーのコロニー径は平均で 75μm で あった。そこで厚さ 20μmの TEM ディスクを作成し、Fig.9 (b) に示すように単一のコロニーから 10×10×50μmの片持 ち梁曲げ試験片を FIB で切り出した。試験片は Fig.10 に示 すように3種類作成し、Fig.1 に示したと同様のノッチを導入 し試験した。Fig.11 にインターラメラーとラメラーが 30°傾斜 したトランスラメラー試験片の破面を示す。インターラメ

mm (a) Specimen machined from one colony and (b) specimen preparation method ラー試験片では破壊はラメラー境界できれいに剥離してい た。

4.2 Fe-23mass% Ni 合金ラスマルテンサイトの局所変 形⁹⁾

マルテンサイトは長い研究の歴史がある微細組織の代表で あろう。このマルテンサイトにはその組織形態から幾つかの 微細組織に分割されている。マルテンサイトの変形機構と変 形に伴う組織変化は鉄鋼の強化機構とあいまって重要な課題 であるが、単一の組織に単一のすべり変形が生じたときの組 織変化は捉えるのが困難であった。本研究はFe-23mass% Ni 合金を 1473K で焼鈍後水焼入れして得られた微細なラス マルテンサイト組織 (Fig.12 (a)) から低角粒界のみを含むブ ロック内から Fig.12 (b) (c) に示すような $10 \times 50 \mu$ mの 微小片持ち梁曲げ試験片を FIB で切り出した。この試験片を 曲げ試験した前後の写真を Fig.13 (a) (b) に、変形部分の拡 大SEM写真をFig.13 (c) に示す。非常に明瞭なすべりステッ プがみとめられる。しかも曲げ試験であるため、試験片厚さ 10μ mのほぼ半分の 5μ m で引張変形はゼロとなり圧縮変形 に変わる。このことは一本のすべりステップを辿っていくと

Fig.10 Micron sized canti-lever type bending specimen of Ti-Al lamellar structure with a notch

Fig.11 Inter-lamellar fracture surface on micron sized cantilever type bending specimen of Ti-Al, (a) Interlamellar and (b) 30° Translamellar fracture

- Fig.12 (a) orientation map of lath martensite in the Fe-23Ni alloy obtained by EBSD measurement,
 - (b) corresponding boundary map (gray and black lines represent the boundaries with misorientation of 8-15 degree, and with misorientation above 15 degree, respectively),
 - (c) SEM image of fabricated micro-sized specimen

- Fig.13 (a), (b) SEM image of micro-sized specimen in the Fe-23Ni alloy before and after deformation, respectively
 - (c) High magnification SEM image of near the specimen surface in $\left(b\right)$

塑性歪の変化と組織変化が対応付けて観察できる事を示して いる。試験片表面にFig.13 (c) に示すようにタングステンを デポジットして表面を保護した後、FIB で TEM 用の薄膜試 料を作成した。Fig.14 に TEM 写真を示す。すべりステップ に沿って歪がゼロになる近傍まで組織観察した結果、試験片 表面近傍では小傾角粒界が明瞭ではなくなることが明らかと なった。これは塑性変形によって転位と小傾角粒界の相互作 用により、幾つかの小傾角粒界が消失したことによると考え られる。

このような観察は一つのレンズマルテンサイトプレートの みの変形、表面へのイオン注入の効果,金属ガラスやポリマー などについても行われている¹⁰⁻¹²⁾。

5 おわりに

超微小試験片を用いる材料評価は従来の材料評価の歴史 に比べると評価法や計測法もほとんど標準化されていない未 だ始まったばかりの青銅器時代であろう。MEMSの分野で 今後必要となるマイクロ材料の評価法として開発したこの評 価方法がはからずも従来材料の新しい研究手段として利用さ れ始めた。特に従来平均的な情報しか得られなかった介在

Fig.14 TEM image showing the deformation microstructure in the Fe-23Ni alloy. The strain increases from lower (near the neutral plane) to upper regions (the specimen surface) 物、析出物、粒界、相境界などの直接的かつ定量的な解析に 利用され始め、新たな材料設計のデーターとなっていくこと が今後益々盛んになることを期待している。

ただし、従来の試験片を1/1000 に微小化していくとその 寸法や荷重計測精度は nm やµNのオーダーになり、既に現 在の技術では計測限界に近づいている。今後微小試験片の 評価方法は新たな計測法開発との戦いであろう。特に非接触 な計測方法は計測技術において最も重要となろう。その限界 が克服されるに従って今まで我々が知っていた特性と異なる 特性が現れてくる。今後益々新たな、思いもかけない特性が 発見され、新しい材料が開発されてくることを期待する。

参考文献

- S.Maekawa, K.Takashima, M.Shimojo, Y.Higo, S.Sugiura, B.Pfister and M.V.Swain Jpn.J.Appl.Phys., 38 (1999) 7194, 7198.
- 2) K.Takashima, Y.Higo, S.Sugiura and M.Shimojo : Mater. Trans., 42 (2001) 68, 73.
- G.P.Zhang, Kazuki Takashima and Yakichi Higo : Mater. Sci.Eng.A426 (2006) 95,100.
- 4) S.Koyama, K.Nakai, K.Takashima and Y.Higo: Trans. Mat.Res.Soc.Japan, 28 (2003), 695,698.
- 5) S.Koyama, K.Takashima and Y.Higo : Key Engineering Materials, 297-300 (2005), 292-298.
- Takashima, S.Koyama, K.Nakai and Y.Higo MRS Symp.Proc., 741 (2003) 35, 40.
- 7) T.P.Halford, K.Takashima, Y.Higo and P.Bowen : 286 (2005) 95, 701.
- T.P.Halford, D.Rudinal, K.Takashima and Y.Higo : Key Engineering Materials, 297-300 (2005) 2416, 2422.
- 9) A.Shibata, Y.Ogawa, M.Sone and Y.Higo: Mater.Sci. Forum, accepted.
- 10) K.Yamada, S.Watanabe, K.Takashima and Y.Higo: Trans.Mat.Res.Soc.Japan, 28 (2003) 755, 758.
- 11) C.Ishiyama, M.Sone and Y.Higo: Key Engineering Materials, 45-346 (2007) 1185, 1188.
- 12) Y.-H.Lee, J.-S.Park, Y.Higo and D.Kwon, Materials Science and Engineering, 449-451 (2007) 945, 948.

(2009年7月10日受付)