

と物系介在物の微細分散および組成制御技術

-製鋼におけるオキサイドメタラジー技術-

Control of the Size and the Composition of Oxide Inclusions for Oxides Metallurgy

若生昌光 Masamitsu Wakoh

新日本製鐵(株)大分技術研究部 主幹研究員

$\langle \mathbf{l} \rangle$ 緒言

これまで鋼中の非金属介在物は製品特性にとって有害であ るとして、その除去に多大の努力がなされてきた。これらの 有害な介在物は、一般に50 µm以上の大きさである場合が 多い。しかしながら、1990年に、数µmサイズの鋼中酸化物 の分布や組成を制御することにより、鋼の凝固後に析出物の 析出核として作用させ、製品特性を向上させようとする考 え、いわゆるオキサイドメタラジー (Oxides Metallurgy) が 提案1-6)され、その応用技術が開発されてきた。本稿は、オ キサイドメタラジー技術紹介の連載第5回目であり、キイテ クノロジーのひとつである、製鋼工程における酸化物系非金 属介在物 (本稿では、酸化物粒子または介在物と略す場合あ り)の制御技術について、物理化学的な観点から紹介する。

オキサイドメタラジーにおける 酸化物系非金属介在物の役割

2.1 MnS 析出核

鋼中の酸化物粒子が析出物に大きな影響を与える典型例と して、脱酸法を変えたラボ実験サンプルの EPMA 解析で得 られた MnS 分布の変化⁷⁾を Fig.1 に示す。酸素濃度が 9ppm 以下と非常に低く、酸化物が殆ど存在しない真空溶解材 (a) の場合には、MnSを示す白い点が灰色のネットワーク領域、 つまり Mnの偏析部に偏在している。一方、Mn-Si-Zr 複合 脱酸材 (b) では、白い点が Mn 偏析の有無にかかわらず均一 に分散している。この白い点は酸化物粒子を表す点 (原画で は青色)とMnSを示す点(原画では黄色)が合成されたもの で、酸化物粒子上に析出した MnSを表している。また、Al 脱酸材 (c) では酸化物粒子を示す小さな白色の点は見られる が、MnSが析出した酸化物粒子を表す点の個数は非常に少 ない。このように、脱酸方法により MnSの析出分布状態が 大きく異なる。

(a) deoxidized with C in vacuum

(b) Mn-Si-Zr deoxidation

(c) Al deoxidation 200µm

gray network: Mn microsegregation white spots in gray network: MnS white spots in black area in (b): MnS on oxide small white spots in (c): oxide

Fig.1 Effect of deoxidizing elements on MnS distribution⁷⁾

2.2 粒内フェライト変態核

Fig.2には、粒内フェライト変態核の例®を示す。酸化物 粒子はTi系であり、その上にMnSとTiNが析出している。 粒内フェライト変態核に関しては種々のものが報告され^{9,10)}、 変態機構についても既に紹介されている¹¹⁾ので、詳細につい ては割愛するが、Fig.2に示した変態核の場合は、以下のよ うに考えられる⁸⁾。核はTi(-Mn)酸化物、MnS、TiNで構 成されている。このTi(-Mn)酸化物はMnSやTiNの析出 核となるだけでなく、粒界からのフェライト形成を抑制する ために添加するBを酸化物内に吸収することにより、粒内 フェライト変態に対する抑制作用を軽減する。また、MnSは Mn 欠乏層の形成によりAr3変態点を下げ、TiNはその格子 整合性によりフェライトの生成を容易にすると考えられる。 いずれの構成元素も極端に低減させると粒内変態率が大きく 低下することから、これは有力な仮説のひとつである。

2.3 組織微細化

微細な凝固組織を得るために、核発生しやすい基質を探索 する研究は、オキサイドメタラジー以前に古くから数多く行 われてきた^{12,13)}。Bramfittは種々の窒化物や炭化物を溶鋼中 に分散させ、δ鉄との格子整合性が良い物質の場合に凝固時 の過冷度が小さくなることを示し、この観点からTiNが適し ていることを報告している。また、大橋らは酸化物について 同様の実験を行い、Fig.3¹⁴⁾に示したように、δ相との格子 不整合度の小さいREM酸化物が過冷度低下、すなわちδ鉄 の核生成に有効であることを明らかにした。また、塗ら¹⁵⁾ も、REM添加による微細化およびREM酸化物とδフェライ トの格子整合性の研究を行い、同様な結果を得ている。更

Fig.2 Example of the transformation site of intragranular ferrite (TEM) $^{\scriptscriptstyle (8)}$

に、小関ら¹⁶⁾はTiNが溶接部での微細な凝固組織形成に非 常に有効であること、およびその機構を説明している。

凝固後の結晶粒成長の抑制手段として、微細粒子によるピ ンニング効果は古くから知られており、Zenerの式¹⁷⁾が有名 である。この観点から、溶接ボンド部 (fusion line 近傍) 靭 性改善のためにTiNを用いた結晶粒微細化について多くの研 究が行われた^{18,19)}。また、溶接熱影響部 (HAZ)の更なる靭 性改善のために、高温でも安定な酸化物や硫化物の微細な粒 子を分散させた鋼が開発された^{20,21)}。

このように、析出核や変態核または結晶粒成長のピン止め として作用する微細な粒子を単独で分散させる、または酸化 物一硫化物一窒化物一炭化物のようにシーケンシャルに析出 制御することにより、複雑な材質制御を可能ならしめること ができると考えられる²²⁾。

3 酸化物系介在物の制御

3.1 酸化物への MnS 析出機構

酸化物粒子を析出物の核として利用する場合には、まず大 事なのは、核となりやすい酸化物の条件を見い出すことであ る。著者らは、特に多くの材質に影響を与える MnS 析出物 について検討し、MnS 析出核として S 溶解度を持った溶融 酸化物が適していることを示した。ここでは、この考え方に ついて説明する。

(1) MnSの析出核となりやすい酸化物条件

Fig.4には、脱酸元素とS濃度を変えた場合の鋼中酸化物 粒子へのMnS析出率について、1kg溶鋼を用いたラボ実験 で解析した結果を示す²³⁾。ここで析出率は、測定視野内の全 酸化物粒子個数を分母とし、MnSが析出した酸化物粒子の

Fig.3 Effect of plannar disregistry between particles and δ Fe on the degree of supercooling at solidification¹⁴⁾

個数を分子にその比をとったものであり、酸化物粒子のうち の何割がMnS析出の核として作用したかを表す。また、Mn 濃度は1.0mass%と一定である。AlやZr脱酸の場合には、 MnS析出率はS濃度が100ppm未満で、S濃度の低下ととも に急激に低下する。一方、Mn-Si脱酸の場合には、S濃度が 低くても高いMnS析出率が維持されている。このように、S が100ppm以上ではMnSが酸化物の種類によらず酸化物粒 子を核として析出するが、Sが100ppm未満ではMnSの析 出は酸化物の種類に大きく依存することが判る。Fig.5には、 MnO-SiO₂系でのMnS溶解度と酸化物へのMnS析出率を 示す²⁴⁾。両者の傾向は良く一致しており、MnS析出率は MnOが53%以上で増加し65%で最大となる。なお、MnO が80%以上でMnS析出率が低下するのは、酸化物の融点が 高いため、著者らの実験では後述する鋼の凝固後の酸化物に よるMnS吸収が起こらなかったためである。

Fig.4 Effect of deoxidation elements on the MnS precipitation ratio on oxide particles²³⁾ ▼: Mn-Si, ◆: Mn-Ti, ■: Zr, ● △: Al

Fig.5 Solubility of MnS and precipitation ratio of MnS in MnO-SiO_2^{24)}

(2)酸化物への MnS 析出機構

Fig.6には、Mn-Si 脱酸した低硫鋼中の析出物の形態を SEM で解析した例を示す⁷⁾が、Mn-Si 酸化物に MnS が析出 している。酸化物とMnSが共存して観察された例として、 古くはSimsが鉄-Mnシリケートの表面にMnSの存在を観 察している²⁵⁾。低S濃度におけるこのようなMnSの析出挙 動は、格子整合や界面エネルギーからは十分な説明ができ ず、Fig.7に示す機構が考えられる⁷⁾。まず、Mnの添加によ りMn系溶融酸化物粒子が生成し、サルファイドキャパシティ の高いこれらの酸化物粒子と溶鋼との間でSが分配される。 溶融酸化物の MnS 溶解度が高い場合には、鋼の凝固後でも 固体鉄中のMnとSが溶融酸化物表面に拡散して溶解が進行 する。すなわち、酸化物が MnSのシンクとなり MnS が蓄積 されることになる。これが、酸化物が固体となった時に酸化 物表面に晶出し、その後の MnS 析出のエンブリオの役割を 果たすと考えられる。冷却が更に進んで今度は鋼中の Mn と Sの濃度積が平衡溶解度積を越えた時に、非常に小さな過飽 和度で MnS 析出を促進させる。更に温度が下がれば、鋼中 のMnとSの拡散によりMnSが成長する。

このように低S濃度の場合でもMnSの析出核となりやすい酸化物として、Mn-Si酸化物の他にMn-Al酸化物やMn-

Fig.6 MnS precipitated on oxide particles (SEM)⁷⁾

Fig.7 Mechanism of MnS precipitation on oxide particles⁷⁾

Ti酸化物も考えられる。森岡ら²⁶⁾はTi-Mn酸化物の状態図 を出しており、比較的低融点の相が存在することが判った。 恐らく硫化物の溶解度も高いものと思われる。以上述べた酸 化物と硫化物との関係は、MnS以外の硫化物、例えばCaS とCaO-Al₂O₃の間でも成り立つと考えられる。北村ら²⁷⁾は、 CaSの生成機構を検討し、CaO-Al₂O₃介在物に溶解した CaSが影響していることを示した。ただし、CaSの場合には 凝固後の固相からの拡散成長の寄与は小さい。

なお、Fig.4に示したように、S濃度が100ppm以上では MnS析出率は酸化物の種類に関わらず高い値となるが、こ れは、Mn×S濃度積が大きくなって析出の過飽和度が高く なったためだと考えられる²²⁾。

3.2 微細分散しやすい酸化物の選択

酸化物を MnSの分散に利用するためには、析出核となる 酸化物粒子そのものを微細に分散させる条件を見いだすこと も重要である。酸化物系介在物の個数を減少させる研究は数 多く行われているが、鋼中に微細なまま残そうという試みは 殆ど見られない。微細分散のためには、以下に示す3つの技 術がキイとなると考えている。

(1) クラスター化しにくい強脱酸元素の利用

上島らは、脱酸元素を種々変えた1kg 溶鋼を用いてラボ実 験を行ない、Fig.8に示すように、鋼中の酸化物粒子個数が Ti < Al < Y < Zr < Ce < Hfの順で増加することを報告し た²⁸⁾。また、Zrには既に溶鋼中に存在する酸化物を微細に したり、酸化物の比重が大きいために分散しやすい効果もあ る²⁹⁾。一般に使用されているAlは強脱酸元素であるが、ク ラスター化しやすいために微細分散には向かない。一方、 Kimura et al.³⁰⁾は共焦点レーザー顕微鏡による溶鋼表面での

Fig.8 Relationship between the number of oxide particles and the number of oxy-sulfides²⁸⁾

観察結果として、MgOがAl₂O₃に較べて凝集しにくく、その 理由として溶鋼とMgOの接触角が小さいためだと報告して いる。酸化物粒子の凝集挙動に関しては、酸化物の種類以外 に、溶鋼酸素濃度や生成した酸化物粒子の個数、更に脱酸 から凝固までの経過時間も影響する。Al₂O₃に較べてクラス ターしにくいZrO₂の場合でも、Zrを多量に添加した場合や、 凝固までの経過時間が長くなった場合には、クラスター化す る傾向にある。

(2) 凝固中に晶出する酸化物の利用

実際の製造プロセスでは、脱酸材の添加から凝固までの時 間が長いこと、そして注入による乱流場のために、クラス ター化しにくい酸化物粒子でも、凝集合体して個数が減少す る。一方、Tiのように脱酸力がそれほど強くないために、鋼 の凝固中に晶出する酸化物は、凝集合体の時間が非常に短い ので微細に分散しやすい。しかしながら、凝固中に晶出する 酸化物は冷却速度の影響を強く受けるために、冷却速度が速 い鋳片表面では数μmサイズの微細な酸化物粒子が多数得ら れるのに対して、冷却速度の遅い鋳片中心部では個数が少な くなるという現象³¹がある。

(3) 弱脱酸元素と強脱酸元素の組み合わせ

上記の弱点を補うためには、(1) で述べた強脱酸元素と組み合わせるのが有効である。例えば Ti 脱酸後に Zr を添加すると、Ti 酸化物分布の冷却速度依存性を小さくすることが出来る³²⁾。

3.3 脱酸初期の酸化物粒子のサイズ制御

微細な酸化物粒子を制御するためには、脱酸初期の酸化 物粒子サイズを支配する因子を明らかにすることが重要であ るが、核生成直後の状態を凍結することは困難であったた め、これまでは、脱酸後の時間が経過した試料で観察された 酸化物粒子サイズを基に、短時間側に外挿して推定する方法 が採られていた。著者らはラボ実験手法と解析方法の工夫に より、AI 脱酸1秒後のアルミナ粒子の観察を行った³³⁾。 Fig.9には、脱酸1秒後のアルミナ粒子の分布状態の変化を、 脱酸前の溶鋼酸素濃度が異なる試料について示す。脱酸前 の溶鋼酸素濃度によって、生成したアルミナのサイズおよび 個数が大きく異なることが判る。

脱酸初期の酸化物粒子(介在物)成長機構として、一般に ブラウン運動、溶質拡散、ストークス浮上の差動凝集、乱流 凝集が考えられるが、著者らの解析の結果、酸素の拡散が支 配的であることを見出した。Fig.10にはモデルによる計算結 果と実際の介在物半径の範囲を示すが、酸素濃度 26ppm で の拡散成長として計算した結果が実測と合った。従って、脱 酸前の溶鋼酸素濃度を制御することが重要である。なお、本 実験はAl脱酸を対象としたが、他の脱酸元素でも同様なこ とが成り立つ。

3.4 複合酸化物の組成制御

(1) Al=200ppm, O=30ppm

例えば、MnSの析出核として鋼中の微細な酸化物粒子を 利用するためには、MnSの析出核になりやすい性質と、核そ のものが微細に分散しやすい性質の両方を兼ね備えた酸化物 であることが望ましい。しかしながら、析出核となりやすい 酸化物は、溶鋼中では液相を含むために流動下では凝集合体 しやすい傾向にあり、逆に微細に分散しやすい酸化物では、 低S濃度の場合のMnS析出能が小さい。従って、MnSの微 細分散のためには、それぞれの特徴を持った酸化物を共存さ せることが重要となる。

このためには、精緻な実験に裏づけされた熱力学モデルが 有効である。Fig.11には、Yamada et al.³⁴⁾が開発した酸化 物生成モデルのアルゴリズムを示す。これは、溶鋼中の元素 と酸化物との間の平衡についてSOLGASMIX³⁵⁾と呼ばれる 多相多成分系の熱力学平衡解析ソルバーを利用するもので、 各相の活量計算に使うモデルとして本モデルでは、溶鋼中の 活量計算にはWagnerの方法を、また溶融酸化物に対して は、Gaye and Welfinger³⁶⁾の取り扱いによるセルモデルを 用いている。セルモデルのパラメータは、種々の二元系状態 図を基にフィッティングで求めてある。更にこのモデルで は、凝固偏析モデルと組み合わせることにより、凝固中の酸 化物晶出挙動の予測も可能である。

これを用いて、酸化物の組成制御を行った例を示す³²⁾。 Fig.12は、MnS析出能と微細分散を両立させたMn-Si-Ti-Zr 脱酸で、MnSの核となりやすいMn-Si酸化物が還元され ないで残るようなTiとZrの濃度範囲をモデル計算結果で示 している。図中の黒丸のTi、Zr成分条件で得られた複合酸 化物をFig.13に示すが、予測通りMnO-SiO₂-Ti₂O₃-ZrO₂複 合酸化物が生成しており、MnO-SiO₂の部分にMnSが析出 している。

計算モデルを用いる場合は、使用する熱力学データが非常 に重要である。伊藤らは、Mg、Ca、Alの脱酸平衡を新たに 測定して報告している³⁷⁻³⁹⁾。また、Ti 脱酸に関しては、車 ら⁴⁰⁾、吉川ら⁴¹⁾の研究がある。今後は、複合脱酸系の熱力

(2) Al=200ppm, O=179ppm

Fig.11 Algorism of the model for calculation of oxide formation $^{\rm 34)}$

Fig.12 Change in the amount of Mn-Si oxide calculated with Ti and Zr addition (Ti:ppm) 32)

学データ構築が望まれる。

3.5 硫化物制御

脱酸元素の組み合わせが材質に影響するものとして、古く から Al と Ca の併用脱酸が鋼の機械的性質向上に有益であ る⁴²⁾といわれていた。これは、融点が低い球状の Ca アルミ ネートや加工時に変形しにくい CaSの生成が、鋼の機械的性 質の異方性を解消するためである。Ca 添加による形態制御 は厚板やラインパイプ向けの高級鋼製造にとって非常に有用 であるために、Ca 量と介在物組成の関係⁴³⁾ や CaO-Al₂O₃-CaS 系の熱力学⁴⁴⁻⁴⁶⁾ などの多くの研究が行われてきた。ま た、REM を利用した硫化物の形態制御^{47,48)} も研究されてき た。

Fig.13 Oxide particle and MnS in the steel with Mn-Si-Ti-Zrdeoxidation (SEM) 32)

この場合には、酸化物の組成制御だけではなく、酸化物-硫化物の相平衡が重要となる。複合酸化物や酸化物-硫化 物の熱力学データ、そして正確な熱力学データをベースとし た計算モデルは、今後のオキサイドメタラジー技術の応用先 拡大に益々不可欠なものと思われる。

また、硫化物については、近年ナノサイズの硫化物 (CuS、Cu_{2-x}S等)の生成が確認されており^{49,50)}、材質制御へ の活用が期待される。

3.6 実操業における酸化物系介在物制御

実操業における介在物挙動は、机上での検討やラボ実験 での結果とは異なり、非常に多くの複雑な要因が絡み合った 結果として決定される。Table 1には、実操業における鋼中 介在物への影響因子を列挙したものである。特に影響の大き いものとしては、前述した脱酸前溶鋼酸素濃度、脱酸材の添 加方法、過飽和度、添加順序、スラグの巻き込み、再酸化、 取鍋やタンディッシュ、モールドでの凝集・浮上が挙げられ る。このように、介在物挙動に対しては非常に多くの因子が 関わっており、これらの挙動を要素ごとに物理化学的にき ちっと解明することが重要である。オキサイドメタラジーに おける数µm以下の微細介在物を均一に分散させる技術は、 数十µmあるいは数百µmの有害な介在物を極限まで除去す る高清浄化技術があって初めて成り立つ。

ここでは一例として、高清浄化技術の一環として検討した、取鍋スラグの巻き込みが溶鋼中のアルミナ粒子に与える

converter	oxygen concentration in molten steel components (activity, interfacial energy) slag particles for the site of heterogeneous nucleation
ladle	deoxidation (way and order of addition, degree of supersaturation) nucleation-growth-agglomeration rising up in molten steel entrainment of slag upside re-oxidation by slag agglomeration in ladle nozzle
CC-tundish	agglomeration and rising up re-oxidation by air entrainment of slag upside or slag attached and reacted with refractory mixing of ladle slag into molten steel at the end of pouring reaction of ladle slag inclusions and alumina inclusions agglomeration in tundish nozzle attaching to the nozzle wall and abruption
CC-mold	rising up with Ar gas bubbles and by upstream molten steel flow going down in strand pool by downstream flow entrainment of mold flux pushing out or entrainment by growing solidified shell phase separation by solidification
reheating furnace & heat treatment	crystallization
rolling & processing	elongating or breaking

Table 1 Factors of oxide inclusion behavior in steel

影響⁵¹⁾について示す。Fig.14には、二次精錬処理後の溶鋼 中の介在物について調査した結果と凝集・浮上計算モデルで 計算した結果の対比を、アルミナ系とスラグ系に分けて示し たものである。この計算モデルは、脱酸生成物であるアルミ ナ粒子と巻き込まれたスラグ粒子の二種粒子の衝突・凝集を 考慮したものであるが、このように計算結果を実測に一致さ せるためには、計算条件として比較的多量の取鍋スラグの巻 き込みを導入する必要がある(図中:after modified の条 件)。従って、二次精錬での鋼中介在物の粒径分布に、巻き 込みスラグが大きく影響していることが判る。

なお、介在物制御に関する産学連携の大がかりな研究活動 が二つの研究会として9年にわたって行われた。これらの活 動結果は報告書^{52,53}に纏められているので、参考にされた い。また、介在物に関する最近の主なレビューとして、竹 内⁵⁴や著者⁵⁵⁾の報告がある。

4 今後の展望と課題

オキサイドメタラジーの概念は非常に幅広いものであり、 今後とも硫化物のみならず窒化物、炭化物といった多くの析 出物制御を経由して材質制御に適用されていくものと考えら れる。そのためには、酸化物とMnSの間で明らかにされた 関係を個々の析出物間で求めることが重要であり、例えば、 及川ら⁵⁶⁾は、TiN-MnSの関係を求めている。また、今後の 技術として、サブミクロンサイズの酸化物制御が必要になっ てくるが、このような制御は、凝固中の酸化物晶出を積極的 に利用した急冷凝固や凝集合体を抑えるための酸化物界面制 御、更には流動を制御する強力な電磁力の適用により実現し ていくものと考えられる。

鋼中酸素量が数 ppm のレベルに達した現在、介在物量を 更に低減するよりは、組成制御によって介在物を無害化す る、あるいは積極的に利用するほうが、製造コスト的にも有 利になると考えられる。また、逆に高純度化を追求した場合 にも、牧⁵⁷⁾が述べているように、組織を微細にする新たな手 段が必要となってくる。更に、リサイクル促進やエコマテリ アルの観点から、今後は合金元素の使用を極力減らした材質 制御が望まれる。このような場合にも、酸化物を利用した組 織制御が有望であると考えられる。従って、オキサイドメタ ラジーは多方面への展開の可能性を秘めており、更には鉄以 外の金属への発展も期待できる。

参考文献

- 1) 高村仁一, 溝口庄三: 材料とプロセス, 3 (1990), 276.
- 2) 溝口庄三, 高村仁一: 材料とプロセス, 3 (1990), 277.
- J. Takamura and S. Mizoguchi : Proc. Sixth Int. Iron and Steel Congress, 1 (1990), 591.
- 4) S. Mizoguchi and J. Takamura : Proc. Sixth Int. Iron and Steel Congress, 1 (1990), 598.
- 5) T. Sawai, M. Wakoh, Y. Ueshima and S. Mizoguchi : Proc. Sixth Int. Iron and Steel Congress, 1 (1990), 605.
- 6) 若生昌光:まてりあ, 35 (1996), 1311.
- 7) 若生昌光, 澤井隆, 溝口庄三: 鉄と鋼, 78 (1992), 1697.
- 8) 山本広一,高村仁一,長谷川俊永:鉄と鋼,79 (1993), 1169.
- 9) D. J. Abson : Welding in the World, 27 (1989) 3/4, 11.
- 10) T. Koseki and G. Thewlis: Materials Science and Technology, 21 (2005), 867.
- 11) 植森龍治:ふぇらむ, 14 (2009), 472.
- 12) B. Bramfitt : Metall. Trans., 1 (1970) , 1987.
- 13) 大橋徹郎,広本健,藤井博務,塗嘉夫,浅野鋼一:鉄と 鋼,62 (1976),614.
- 14) 大橋徹郎, 為広博, 高橋学:まてりあ, 36 (1997), 159.

Fig.14 Comparison of calculated and observed numbers of inclusions after secondary refining treatment⁵¹⁾

- 15) 塗嘉夫, 大橋徹郎, 広本健, 北村修: 鉄と鋼, 66 (1980),628.
- 16) 小関敏彦, 井上裕滋: J. Jpn. Inst. Met.: 65 (2001), 644.
- 17) C. Zener, quoted by S. Smyth : Trans. AIME, 175 (1948) , 15-51.
- 18) 金沢正午,中島明,岡本健太郎,金谷研:鉄と鋼,61 (1975),2589.
- 19) 松田正一, 奥村直樹: 鉄と鋼, 62 (1976), 1209.
- 20) 児島明彦,植森龍治,皆川昌紀,星野学,市川和利:ま てりあ,42 (2003),67.
- 21) 児島明彦,清瀬明人,植森龍治,皆川昌紀,星野学,中島隆雄,石田浩司,安井洋二:新日鉄技報,380 (2004),
 2.
- 22) 高村仁一: 私信
- 23) M. Wakoh, T. Sawai and S. Mizoguchi ISIJ Int., 36 (1996), 1014.
- 24)小山徳寿,月橋文孝,佐野信雄:鉄と鋼,79 (1993), 1334.
- 25) C. E. Sims : Basic Open Hearth Steelmaking, Chap.12, 459, ed. by G. Derge, The American Institute of Mining, Metallurgical and Petroleum Engineers, New York, (1964).
- 26) 森岡泰行,森田一樹,月橋文孝,佐野信雄:鉄と鋼,81 (1995),40.
- 27) 北村信也, 宮村紘, 福岡功博: 鉄と鋼, 73 (1987), 677.
- 28) 上島良之,湯山英俊,溝口庄三,梶岡博幸:鉄と鋼,75 (1989),501.
- 29) 澤井隆, 若生昌光, 溝口庄三: 鉄と鋼, 82 (1996), 587.
- 30) S. Kimura, K. Nakajima and S. Mizoguchi : Metall. Trans. B, 32B (2001), 79.
- 31)後藤裕規,宮沢憲一,山口紘一,荻林成章,田中和明: 鉄と鋼,79 (1993),1082.
- 32) 若生昌光,澤井隆,溝口庄三:鉄と鋼, 82 (1996), 593.
- 33) M. Wakoh and N. Sano: ISIJ Int., 47 (2007), 627.
- 34) W. Yamada, T. Matsumiya and A. Ito : Proc. Sixth Int. Iron and Steel Congress, 1 (1990), 618.
- 35) G. Errikson : Acta Chem. Scand., 25 (1971) , 2651.
- 36) H. Gaye and J. Welfringer: Second Int. Sympo. on Metallurgical Slags and Fluxes, ed. by H. A. Fine and D. R. Gaskell, The Metallurgical Society of AIME, Warrendale,

Pennsylvania, (1984), 357.

- 37) 伊藤裕恭, 日野光兀, 萬谷志郎: 鉄と鋼, 83 (1997), 623.
- 38) 伊藤裕恭,日野光兀,萬谷志郎:鉄と鋼,83 (1997), 695.
- 39) 伊藤裕恭, 日野光兀, 萬谷志郎: 鉄と鋼, 83 (1997), 773.
- 40) 車雨烈,長坂徹也,三木貴博,佐々木康,日野光兀:材 料とプロセス,18 (2005),1032.
- 41) 吉川健, 森田一樹: 材料とプロセス, 18 (2006), 81.
- 42) 例えば, A. P. Gagnebin: Trans. Am. Foundrymen's Assoc., 46 (1938), 133.
- 43) 例えば,玉本茂,佐々木寛太郎,梨和甫,杉田宏,森明 義:鉄と鋼,63 (1977),2110.
- 44) R. A. Sharma and F. D. Richardson : JISI, 198 (1961), 386.
- 45) 竹之内朋夫, 鈴木是明: 鉄と鋼, 63 (1977), 1653.
- 46) 藤澤敏治,井上茂,高木茂義,鰐部吉基,坂尾弘:鉄と 鋼,71 (1985),839.
- 47) L. Lyckx, J. R. Bell, A. McLean and M. Korchynski : Metall. Trans., 1 (1970), 3341.
- 48) 桜谷敏和,江見俊彦,垣生泰弘,江島柳夫,三本木貢治:鉄と鋼,62 (1976),1653.
- 49)山本研一,柴田浩幸,中島敬治,溝口庄三:鉄と鋼,90(2004),788.
- 50) 小林能直,長井寿:まてりあ,43 (2004),730.
- 51) 淵上勝弘,若生昌光,遠藤公一,今村尚近,清瀬明人, 沢田郁夫:鉄と鋼,85 (1999),368.
- 52) 学振非公開資料 1994 年 9 月
- 53) 超清浄鋼研究の最近の展開,日本鉄鋼協会高温プロセス 部会 超清浄鋼研究会,(1999.5.20)
- 54) 竹内秀次: 極低炭素鋼製造プロセスにおける高清浄度化 と介在物制御技術, 第182・183 回西山記念技術講座, (2004), 63.
- 55) 若生昌光: 非公開資料 2009 年1月
- 56) 及川勝成,大谷博司,石田清人,西沢泰二:鉄と鋼,80 (1994),623.
- 57) 牧正志: 鉄と鋼, 81 (1995), N547.

(2009年9年16日受付)