鉄鋼精錬プロセス工学概論 2

Introduction of Steel Refining Process Engineering 2

北村信也 Shin-ya Kitamura

東北大学 多元物質科学研究所 教授

前号 (Vol.15 No.5 P.270) からの続き

2.3 スラグ・メタル反応

製鋼プロセスは、脱炭反応の他に不純物である燐や硫黄の 除去が重要な目的であり、これらはスラグとの分配を利用し て除去される。この時同時に、Si、MnやFeの分配も起こる。 このような反応をスラグ・メタル反応と呼んでいる。

門講座

平炉で精錬がおこなわれていた時代は、処理時間が長かっ たこともありスラグとメタルの間の分配は平衡に近く、熱力 学による解析で充分とされていたが、転炉に変わってからは 処理時間が速いため、反応が熱力学的平衡まで進むことはほ とんどなくなった。溶銑脱燐処理が実用化されてから、この プロセスで起こっている反応を熱力学で解析する試みがなさ れたが、平衡酸素濃度が極めて低い炭素飽和溶鉄と、FeO を数パーセント含むスラグとが接触しているという系である こと自体が平衡関係では説明できず、益々、反応速度の重要 性が認識されてきた。

一般に反応の素過程は、スラグ相側境界層での物質移動、 溶鋼側境界層での物質移動、界面での化学反応が考えられる が、高温でもあり化学反応速度は非常に速く、スラグ相側境 界層と溶鋼側境界層での物質移動速度の混合律速と考えら れている。

図24で示した境膜説に基づけば、バルクは攪拌により均 一濃度である、境膜内にのみ濃度勾配が存在する、境膜内物 質移動は溶質の拡散で起こる、という3つの仮定により、異 相界面でのA成分の物質移動流束N_A (mol/s/m²) は (2.3.1) 式で表される。

$$N_{A} = -D (dC/dx) = (D/\delta) (X_{A}^{i} - X_{A}^{\infty})$$
$$= k (X_{A}^{i} - X_{A}^{\infty}) \qquad (2.3.1)$$

は物質移動係数 (m/s)、D は溶鋼中A元素の拡散係数 (m^2/s) 、 δ は濃度境界層の厚さ (m) である。

スラグ・メタル反応では、このような境膜がスラグ相、溶 鋼相の両方に存在し、スラグと溶鋼の界面は平衡であると仮 定した2重境膜モデルが用いられる(図25)。この場合、ス

図 25 2 重境膜説

ラグから溶鋼に向かう流束の向きを正とすると、スラグ側の 物質移動流束 (N_s) は (2.3.2) 式で、溶鋼側の物質移動流束 (N_m) は (2.3.3) 式で、界面での平衡関係は平衡分配比を L とすると (2.3.4) 式で表される。

$N_s = k_s (X_s - X_s^i)$ (2.3.2)
$N_m = k_m (X_m^i - X_m)$ (2.3.3)
$X_{s}^{i} / X_{m}^{i} = L$

ここで、k_s、k_mはスラグ側境界層内、溶鋼側境界層内の物 質移動係数 (m/s) である。

スラグ側の物質移動流束と溶鋼側の物質移動流束は等しい、つまり界面では元素の蓄積はないとすると (2.3.5) 式が成り立ち、ここに (2.3.4) 式の関係を代入すると、界面濃度がks、km、Lの関数として得られる。

 $N = N_s = N_m - \dots - (2.3.5)$

結局、反応速度は (2.3.6)、または (2.3.7) 式で記述される。

$$\begin{split} N & (\frac{1}{L \times k_{s}} + \frac{1}{k_{m}}) = \frac{X_{s}}{L} - X_{m} \cdots \cdots \cdots (2.3.6) \\ N & (\frac{1}{k_{s}} + \frac{L}{k_{m}}) = (X_{s} - L \times X_{m}) \cdots \cdots \cdots (2.3.7) \end{split}$$

総括物質移動係数 (k, k') を (2.3.8)、(2.3.9) 式で定義する と、(2.3.6)、(2.3.7) 式は (2.3.10) 式となる。

$\frac{1}{k}$	$=\frac{1}{L \times k_s}$	$+\frac{1}{k_m}$		
$\frac{1}{k'}$	$=\frac{1}{k_s}+$	<u>L</u>		
N =	$= \mathbf{k} \times (\mathbf{X}_{s} \nearrow$	L - X	\mathbf{X}_{m}) = k' × (\mathbf{X}_{s} - L × \mathbf{X}_{m})	

$$\mathbf{K} \times (\mathbf{X}_{\mathrm{s}} / \mathbf{L} - \mathbf{X}_{\mathrm{m}}) = \mathbf{K} \times (\mathbf{X}_{\mathrm{s}} - \mathbf{L} \times \mathbf{X}_{\mathrm{m}})$$
.....(2.3.10)

製鋼反応の場合、スラグ中と溶鋼中での各元素の拡散係数 を比較すると、ksはkmに比べると1/10~1/100程度となる。 (2.3.8) 式や(2.3.9) 式を見ると、分配比が10~100より充分 に大きければメタル側物質移動律速となり、逆に充分に小さ ければスラグ側物質移動律速となる。しかし、実機のスラグ は完全溶融状態でない場合も多く、各プロセスにおける反応 の律速段階は充分な検討が必要である。

例として溶銑の脱珪素反応をとりあげる。

反応速度を[%Si]の低下速度で書くと、(2.3.6) 式や

(2.3.7) 式は、反応界面積をA(m²)、溶鋼体積をV(m³)、総 括物質移動係数をk'(m/s)とすると(2.3.11) 式のように書 ける。

$$-\frac{d[\%Si]}{dt} = k'\frac{A}{V} ([\%Si] - [\%Si]^*) \dots (2.3.11)$$

分配比 (L) が充分に大きく [%Si]* (= (%SiO₂)/L) がゼ ロとみなせる場合はメタル側物質移動律速になり-d [%Si] /dtと [%Si] の間には原点を通る直線関係が成り立つ。一 方、Lが小さく [%Si]*がゼロとみなせなくなると-d [%Si] /dtと [%Si] の関係は直線から逸脱する。図 26 は実験室で 酸化鉄を添加して溶銑脱珪を行った例であるが²³⁾、[Si] が高 い場合は直線関係があるが、[Si] が低下するとそれから逸脱 している。直線関係が成り立つ領域で得られた物質移動係数 が、すべての濃度領域で同一であると仮定し [%Si]*を推定 した結果が図 27 であるが、(FeO) が 40%以上であれば [% Si]*はゼロでメタル側物質移動律速となり、(FeO) がそれ以 下ではメタル側物質移動とスラグ側物質移動の混合律速にな ることがわかる。

尚、Lが変化した場合、(2.3.8) 式、(2.3.9) 式からわかるように、[%Si]*だけでなく総括物質移動係数も変化するため、 すべての濃度領域で物質移動係数が同一であるとの仮定は厳 密には成立しないことに注意する必要がある。

上記のように単一の反応は記述することができるが、実際 には様々なスラグ・メタル反応は同時進行するため、それら を解析するには上記の速度式を各元素について解かなければ ならない(図28)。これを競合反応モデルと称する^{24,25)}。この モデルでは、スラグ相とメタル相の物質移動を二重境膜説で 記述し、界面平衡と電気的中性条件を仮定することで、あら

図 26 脱珪速度と [%Si]の関係 (文献 23) による)

334

ゆる元素の濃度変化を計算することができる。

今、M 元素の酸化反応を(2.3.12)式で表した場合、 (2.3.6)式に相当する反応速度式は(2.3.13)式となり、また 界面平衡は(2.3.14)式となる。

 $[M] + n [O] = (MO_n) - (2.3.12)$

$$E_{M} = (\%MO_{n})^{*} / \{[\%M]^{*} \cdot a_{o}^{*n}\}$$

= 100 · C · M_{MOn} · f_M · K_M / (ρ_{s} · γ_{MOn}) ······ (2.3.14)

ここで、 J_M はM元素のモル流束 (mol/ (m² · s))、 k_m 、 k_s はメタル側、スラグ側の物質移動係数 (m/s)、 ρ_m 、 ρ_s はメ

図 27 (FeO) と [Si]*/ [Si] の関係 (文献 23) による)

図 28 競合反応モデルの概念(文献 24) による)

タル、スラグの密度 (kg/m³)、M_M、M_{Mon}はMの原子量、 MO_nの分子量、a_oは酸素活量、C は液相スラグ中の全モル 数、f は M の活量係数、K_M は (3.1.12) 式の平衡定数、γ_{Mon} は MO_nの活量係数であり、上添えのb はバルク濃度、*は界 面濃度を示す。

また、脱炭反応はメタル / ガス反応であるため、(2.3.15) 式のようにメタル側の物質移動と CO ガス発生速度で記述さ れる。ここで、Pco*は界面での CO 分圧であり Gco は脱炭速 度定数 (mol/(m²・s))である。

$$J_{C} = (k_{m} \cdot \rho_{m} / (100 M_{C})) \{ [\%C]^{b} - [\%C]^{*} \}$$

= G_{C0} (P_{C0}*-1)(2.3.15)

各元素 (Si, Mn, P, Fe, O, S等) に対する (2.3.13) 式と (2.3.15) 式に関して、電気的中性条件が成り立つ、つま りカチオンの移動量とアニオンの移動量は等しいとすると (2.3.16) 式が成り立つ。

これらの式を連立させると界面酸素活量 a。*を唯一の変数 とする方程式が書け、解析解が得られる。つまり、このモデ ルを用いれば、スラグ、メタルの全組成変化が一気に計算で きることになる。

例えば、PとSiを含む溶鉄にFeOを添加した反応を考える²⁵⁾。この場合の反応は次の3つである。

 $[P] + 2.5 [O] = (PO_{2.5}) \dots (2.3.17)$

 $[Si] + 2 [O] = (SiO_2)$ (2.3.18)

(2.3.13) 式に対応する濃度変化を(2.3.7)と同様の形式
 で、総括物質移動係数k'を用いて書くと、各成分の濃度変
 化は(2.3.20)~(2.3.25)に示す各式で書き表される。ここで
 Wは重量(kg)、ρは密度(kg/m³)であり、添え字のmはメ
 タル相、sはスラグ相、*は界面、P、Si、O、FeOは各物質
 を表す。

$$-\frac{d[\%P]}{dt} = \frac{A}{W_{m}} k'_{P} \{L_{P} [\%P] - (\%P)\} \dots (2.3.20)$$

$$\frac{1}{k_{\rm P}} = \frac{L_{\rm P}}{k_{\rm m}^{\rm P} \rho_{\rm m}} + \frac{1}{k_{\rm s}^{\rm P} \rho_{\rm s}} \dots (2.3.21)$$

$$-\frac{d[\%Si]}{dt} = \frac{A}{W_m} k'_{Si} \{L_{Si}[\%Si] - (\%Si)\} \dots (2.3.22)$$

$$\frac{1}{k's_{i}} = \frac{L_{Si}}{k_{m}^{Si}\rho_{m}} + \frac{1}{k_{s}^{Si}\rho_{s}} - (2.3.23)$$

$$-\frac{d[\%O]}{dt} = \frac{A}{W_{m}} k_{m,\rho m}^{O} \{ [\%O] - [\%O]^{*} \} \cdots (2.3.24)$$

尚、(2.3.24) 式と (2.3.25) 式は、メタル中では O として、 スラグ中では FeO として移動する流束が釣り合うことを示し ている。

(2.3.14)式に対応する界面平衡の式は以下のようになる。 ここで、A、Bは温度とスラグ組成で決まる値であり、熱力 学的には平衡定数と活量係数で求められる。

$$L_{P} = \frac{(\% P)^{*}}{[\% P]^{*}} = A [\% O]^{*2.5} \dots (2.3.26)$$

$$L_{Si} = \frac{(\% Si)^{*}}{[\% Si]^{*}} = B [\% O]^{*2} \dots (2.3.27)$$

$$L_{O} = \frac{(\% FeO)^{*}}{[\% O]^{*}} \dots (2.3.28)$$

(2.3.16) 式は原子量、分子量をMとすると (2.3.29) 式で 表される。

$$\begin{aligned} &-\frac{5}{2} \frac{W_{m}}{M_{p}} \frac{d[\%P]}{dt} - \frac{2}{1} \frac{W_{m}}{M_{Si}} \frac{d[\%Si]}{dt} \\ &+\frac{W_{s}}{M_{FeO}} \frac{d(\%FeO)}{dt} + \frac{W_{m}}{M_{O}} \frac{d[\%O]}{dt} = 0 \dots (2.3.29) \end{aligned}$$

(2.3.20) ~ (2.3.28) 式を (2.3.29) 式に代入し [%0]*につ いて整理すると (2.3.30) 式が得られる。つまり、この式にお いて、A、B、Lo、km、ksの値が与えられれば [%0]*が求め られ、この値を (2.3.20) ~ (2.3.25) 式に代入すれば各成分の 単位時間当たりの濃度変化が計算できることになる。

$$\begin{split} & \frac{5k'_{P}A[\%P]}{2M_{p}} [\%O]^{*2.5} + \frac{2k'_{Si}B[\%Si]}{M_{Si}} [\%O]^{*2} \\ & + (\frac{k_{s}^{FeO}\rho sLo}{M_{FeO}} + \frac{k_{m}^{O}\rho m}{M_{O}}) [\%O]^{*} \\ & - (\frac{5k'_{P}(\%P)}{2M_{p}} + \frac{2k'_{Si}(\%Si)}{M_{Si}} + \frac{k_{m}^{O}\rho m[\%O]}{M_{O}} \end{split}$$

$$+\frac{k_{s}^{FeO}\rho_{s}(\%FeO)}{M_{FeO}}\}=0$$
.....(2.3.30)

図 29²⁵⁾ は小型炉での実験結果へ適用したものであるが、 燐、珪素、酸素の挙動を良くシミュレートできている。また、 計算で用いたA、B、Lo、km、ksの値から (2.3.21) 式の左辺 である総括物質移動係数と、右辺第1項との関係を図 30 に 示すが、脱燐反応がメタル側物質移動で律速されるなら縦軸 と横軸の値は同じになるのに対して、実験で得られた総括物 質移動係数ははるかに小さく、スラグ側物質移動速度の影響 が極めて大きいことが見て取れる。

図 31²⁴⁾は小型炉での溶銑の同時脱燐脱硫反応へ適用した 例であるが、測定できない界面酸素活量が計算され、酸化鉄 を含む精錬剤が供給されている間は次第に増加するのが、供

図 29 溶鉄の脱燐脱珪に対する実験値と計算値の比較(文献 25)による)

図 30 競合反応モデルによる律速段階の解析例 (文献 25) による)

給を停止した後は次第に低下し、それに伴い復燐が生じている。

この他、溶銑予備処理²⁶⁾、2次精錬²⁷⁾、転炉脱炭²⁸⁾などでは、このモデルを応用したプロセスシミュレーションモデルも報告されている。

このモデルの計算は比較的容易であるが、決めなければな らないパラメータが非常に多く含まれる。例えば、界面での 平衡分配は界面濃度が反応の進行によって大きく変化する ため一定ではなく、それを正確に計算するには各成分の活量 係数を組成や温度の関数として正しく記述する必要があり、

また、物質移動係数も撹拌の条件などの関数として数式化す る必要がある。多くの場合は、いくつかの仮定をした上で計 算を行っているので、適用に際しては充分な検討が必要であ る。

2.4 ガス・メタル反応(窒素の吸収・放出)

窒素は侵入型元素であるため高成形性鋼板などを製造する 場合には、炭素とともに極低濃度にまで低下させることが望 まれる元素である。しかし、精錬は主に大気下で行われるた め窒素の吸収は避けられず、真空精錬でのわずかなリークに より窒素が吸収される。

溶鋼への窒素の吸収や溶鋼からの放出(脱窒素)には、酸 素や硫黄といった界面活性元素の影響が大きいことが知られ ている。また、かつては、吸収反応が1次反応で放出反応が 2次反応であるという整理がなされ、あたかも正逆反応で機 構が異なるように考えられていた²⁹⁾。しかし、この違いは本

図31 競合反応モデルによる同時脱燐脱硫反応の解析例(文献24)による)

質的なものではなく、以下に示すように統一的に解釈されて いる³⁰⁾。

界面化学反応が律速する場合は、界面での吸着窒素をN (ad) と書くと (2.4.1) 式で表され、反応速度は (2.4.2) 式の ように2次式となる。

$$N_2 \hookrightarrow 2N (ad)$$
 (2.4.1)

$$\mathbf{r} = \mathbf{k}_{\mathrm{R}} \frac{\mathbf{A}}{\mathbf{V}} \left(\mathbf{C}_{\mathrm{e}^2} - \mathbf{C}^{*2} \right)$$
(2.4.2)

液相内物質移動が律速する場合は (2.4.3) 式で表され、反応速度は (2.4.4) 式のように1次式となる。

N (ad) \Leftrightarrow [N] ------ (2.4.3)

$$r = k_L \frac{A}{V} (C^* - C^b)$$
(2.4.4)

ここで、r は反応速度 (1/s)、A は反応界面積 (m²)、V は 溶鉄体積 (m³)、k_L は液相内物質移動係数 (m/s)、k_R は界面 化学反応速度定数 (m⁴/mol・s)、C^b は液相バルクの窒素濃 度、C*は界面濃度、C_e は平衡濃度である。

反応が定常状態である場合は (2.4.2) 式と (2.4.4) 式は等 しくなる。また、界面濃度ではなく平衡濃度を用いた見かけ の1次反応速度定数 k₁を (2.4.6) 式で定義する。

$$k_{R} \frac{A}{V} (C_{e^{2}} - C^{*2}) = k_{L} \frac{A}{V} (C^{*} - C^{b}) \dots (2.4.5)$$

$$r = k_{l} \frac{A}{V} (C_{e} - C^{b}) \dots (2.4.6)$$

(2.4.5) 式より C*を求めると (2.4.7) 式が得られる。

(2.4.5) 式と(2.4.6) 式より(2.4.8) 式が得られ、これに (2.4.7) 式を代入すると(2.4.9) 式が得られる。

 $k_R (C_e - C^*) (C_e + C^*) = k_l (C_e - C^b) \dots (2.4.8)$

(2.4.9) 式より、 $k_R/k_L \gg 1/(C_e + C^*)$ 、つまり、($C_e + C^*$) が非常に大きい場合には $k_1 = k_L$ となり、反応速度は(2.4.6) 式のような1次式で表され、 $k_R/k_L \ll 1/(C_e + C^*)$ 、つまり、 (C_e+C^*) が非常に小さい場合には $k_1 = k_R (C_e+C^b)$ となり、 これを (2.4.6) 式に代入すると反応速度は 2 次式で表される ことになる。

別の見方をすれば、 $k_R \gg k_L/(C_e + C^*)$ 、つまり、界面活 性元素がなく k_R が非常に大きい場合には $k_1 = k_L$ となり1次 式で表され、 $k_R \ll k_L/(C_e + C^*)$ 、つまり、界面活性元素濃 度が高くなり k_R が非常に小さい場合には2次式で表されるこ とになる。

これと同じ考え方であるが、脱窒素反応を、①液相バルク から界面への物質移動(液相側物質移動)、②界面における 窒素分子の生成と離脱(界面化学反応)、③窒素分子の界面 から気相バルクへの移動(気相側物質移動)の3つの素過程 と考えると³¹⁾、それぞれ(2.4.10)~(2.4.12)式で記述でき る。

$-J_{\rm L} = Ak_{\rm L} \left(C^{\rm b} - C^* \right)$)	(2.4.10)
--	---	----------

ここで、 J_L 、 J_R 、 J_G はそれぞれ液相内物質移動速度、界面 化学反応速度、気相内物質移動速度であり mol/s で表され る。 k_G は気相内物質移動係数 (m/s)、 P_{N2} は気相の窒素分圧 である。総括反応速度 J_{ov} は (2.4.13) 式で、定常状態 ($J_{ov} = J_L = J_R = J_G$) での総括反応速度定数 (k_{ov}) は (2.4.14) 式で表 される。

 $\mathbf{k}_{ov} = (\mathbf{k}_{L}/2\mathbf{C}^{b2}) \ \{2\mathbf{C}^{b} + \varphi - (\varphi^{2} + 4\varphi\mathbf{C}^{b})^{1/2}\}$

ここで、 $\varphi = k_L/k_R$ であり $P_{N2^b} = 0$ としている。

今、酸素を含まない純鉄での実験値から求めたk_Lを用い てk_Rを計算した結果を図32に示すが、窒素の吸収実験でも 放出実験でも同じ値が得られていることがわかる。図33は窒 素吸収時の界面化学反応抵抗の割合(r_R)を計算した例であ るが、界面活性元素濃度や攪拌による液相内物質移動速度に よって、この関係は種々に変わることに注意すべきである。 尚、界面活性元素濃度の影響については図34のような実験 式も得られている³²⁾。

窒素の挙動を考える場合、このように界面活性元素が存在 するとkovが小さくなるため脱窒素速度が低下する反面、窒 素の吸収速度も遅くなる。これは転炉出鋼時は未脱酸溶鋼で あるため大きな吸窒素はおこらないが、脱酸後である連続鋳 造工程での大気との接触は大きな窒素ピックアップを招くこ とを意味している。

ところで、図 35 は真空下で溶鋼中を浮上する Ar 気泡への 脱窒素を、(2.4.10) ~ (2.4.12) 式で計算した例である³³⁾。こ こで、 k_L,k_G は浸透説により、拡散係数 D (m^2/s),気泡直径 d_B (m)、気泡上昇速度 v_B (m/s)を用いて (2.4.15) 式で、気 泡浮上速度は (2.4.16) 式で求めている。

$$k_{L} = 2 \sqrt{\frac{D_{L} v_{B}}{\pi \, d_{B}}} \qquad k_{G} = 2 \sqrt{\frac{D_{G} v_{B}}{\pi \, d_{B}}} \cdots (2.4.15)$$
$$v_{B} = \sqrt{0.5 d_{B} g} \cdots (2.4.16)$$

これより、吹き込み深さを大きくしても気泡が表面を離脱 する時の窒素量はほとんど変わらず、また、溶鋼窒素濃度と

図32 化学反応速度定数に対する界面活性成分の影響(文献³¹⁾による)

図 33 窒素吸収時の界面化学反応抵抗の割合(文献 31) による)

平衡する窒素分圧からの計算値よりも、かなり低い。これは 気泡界面を通しての脱窒素は浴表面近傍を除くとあまり期待 できないことを示している。

(次号 Vol.15 No.7 に続く)

図 34 化学反応速度定数に対する界面活性元素濃度の影響(文献 ³²⁾ に よる)

図 35 溶鋼へ吹き込まれた Ar 気泡への脱窒素の計算例 (文献 33) による)

参考文献

- 23) 成田貴一,牧野武久,松本洋,彦坂明秀,勝田順一郎:鉄と鋼,69 (1983),1722.
- 24) S.Ohguchi, D.G.C.Robertson, B.Deo, P.Grieveson and J.H.E.Jeffes : Ironmaking and Steelmaking, 11 (1984), 202-213.
- 25) 土居定雄,森克巳,川合保治,近藤明:鉄と鋼,72 (1986),1560.
- 26) S.Kitamura, T.Kitamura, K.Shibata, E.Aida, R.Sakomura, T.Kaneko and T.Nuibe : ISIJ Int., 31 (1991) , 1329.
- 27) K.J.Graham and G.A.Irons : Proceedings of the 3rd International Conference on Process Development in Iron and Steelmaking, 1 (2008), 385.
- 28) S.Kitamura, H.Shibata, and N.Maruoka : Proceedings of the 3rd International Conference of Process Development in Iron and Steelmaking, 1 (2008), 283.
- 29) 鈴木鼎, 森一美, 伊藤洋平: 鉄と鋼, 55 (1969), 877.
- 30) 川合保治:鉄冶金反応速度論,日刊工業新聞社,(1973),105.
- 31) 井上道雄:鉄と鋼, 70 (1984), 1315.
- 32) 原島和海,溝口庄三,梶岡博幸,板倉勝利:鉄と鋼,73 (1987),1559.
- 33) 佐野正道:鉄と鋼, 76 (1990), 1986.

(2009年10月21日受付)

39