特集記事 ● 11

材料の明日を拓く表面・界面の制御・評価技術

極表面分析技術の進歩と今後の展開

Development and Future of Surface Analysis Methods

河合 潿 京都大学 工学研究科 Jun kawai

材料工学専攻 教授

はじめに

薄膜が真空中に保持されているとき、この薄膜に光を照射 すると、表側の界面と裏側の界面で光は部分的に反射される (図1)。表と裏の界面で反射される光は互いに位相が逆なの で、薄膜の厚さを波長以下の厚さまで次第に薄くしてゆくと、 最後に位相が互いに打ち消しあって、部分的にも光を反射し なくなる1)。光は鏡の表面で反射するが、厚さゼロの鏡では 反射もゼロになる。光は少し表面からしみこんで、内部も合 わせた鏡全体の電子で光を反射している。これはちょうど単 結晶でX線がブラッグ反射するとき、X線が到達する範囲の 結晶全体にわたって周期的な電子密度の変化が、入射X線に 対して回折格子として働くのに似ている。

光を波として考えると、このように最表面の分析は原理的 に不可能である。しかし現実にはさまざまな量子を用いて最 表面に吸着した単原子を分析したり、固体の最表面の元素の 種類やその化学状態、あるいは原子配列を分析することがで きる。こうした分析法を開発した当事者は、原理的に可能か

薄膜に反射する光が薄膜の厚さが0の極限で反射しなくなることを 図1 示す模式図

どうかというようなことは意識していなかったに違いないが、 光や電子、イオンや中性原子の粒子としての性質を最大限に 利用して表面分析法が開発されてきたことは間違いない。

本稿は「材料の明日を拓く表面・界面の制御・評価技術」 の特集号企画の一部として「表面・界面のナノスケール分析」 について、特にシンクロトロンのような特殊装置を用いない 分析法の進歩と今後の展開について述べるのを目的とする。

極表面分析技術の必要性

実用材料では、最表面の状態がどうであっても、原子の皮 1枚の違いは、バルクとしての材料強度や物性に比べれば無 視できる。あえてその最表面の分析は必要ない。

たとえば金属表面に1秒間に衝突する気体分子数を考え ると、1×10⁻⁶Torrの高真空でも、金属表面は反応性に富む ので、金属表面に飛び込んできたすべての分子が反応する とすれば、1秒間で金属表面は気体分子で埋め尽くされる。 表面が1×10⁻⁶Torrの気体に1秒間露出されることを1ラング ミュア単位 (1L) と呼ぶのはこうした物理的な意味がある。1 ×10⁻⁶ Torr · s = 1L²⁾。また1Torr = 133Paである。気体分子 が化学吸着したあとの表面は今度は逆に不活性になり、新た に気体分子が飛び込んできても、吸着している気体分子が跳 ね返して、もう酸化は進行しなくなる。気体分子1層という のはあまりに理想的過ぎるが、料理用の市販アルミ箔の場合、 表面酸化層の厚さは2nm (20Å) で意外に薄い。金属アルミ ニウムブロックの場合には、酸化層は電気テスターの金属棒 で軽く触れる程度では、電流も通さない位に厚く形成されて くる。金属材料を空気中で利用する場合には酸化は避けがた く、メッキや塗装で酸化が進行しないようにしておけば十分 であり、真空中で清浄表面をどんなにがんばって分析してみ ても、応用する場合には何の役にも立たない場合が多い。ま た表面の凸凹に比べてそれより薄い表面の分析をしてもあま

り役には立たないように感じるのも事実である。

それなら表面分析法は不要か、と言われれば、必ずしも そうでもない。たとえば垂直磁気記録ハードディスクでは、 Inm以下の薄膜の多層膜からなる構造をもつが、成膜プロセ スで薄膜に取り込まれる不純物に依存して薄膜の構造が変化 するので磁気特性が変化する³⁾。このような成膜プロセスで は最表面の不純物濃度を極めて低い濃度まで分析できる分 析法が必要となる。

一方、微小領域の不純物元素を分析する方法も必要とされている。例えばオージェ分析法は0.5nm表面深さ、10nm 空間分解能の分析が可能であるが、実際の分析はたいてい こういうスペックよりも良くても1桁、通常は2桁悪い条件が やっと出せる程度である。外部の大電流交流回路(動力線な ど)の影響がないように分析装置を設置したとしても、表面 の不均一な電場や局所的な磁場の影響で画像が流れたりぼ けたりするからである。鋼中の介在物分析などでも微小領域 分析法はよく使われている。

3 表面分析法

表面分析法をまとめると図2のようになる⁴⁾。この図は現 在のナノサイエンス(株)⁵⁾のホームページからとったもので あるが、約10年前の同Evans Analytical Groupの同じ図を示 したものが図3である。空間分解能も濃度も一見よくなって いるように見えるがこの10年間でほとんど進歩がないこと がわかる。両図に表れる分析法のうち主な表面分析法の意 味を表1に示した。このように表面分析法は新しい分析法が もはや現れず、その性能は極限まで達しており、1桁の向上 もなさそうに見えるところまで達成されている。この限界を 打ち破るのがシンクロトロン放射光(SR)だと思われている が、実際にSEM-EDXとシンクロトロン・マイクロビームに よる元素分析を比較したものが図4である。この図は、SEM をSPring-8ビームラインに設置した状態で、同一の黄砂粒子 1個のX線スペクトルをEDXによって測定したものである。 シンクロトロン放射光での測定は入射X線エネルギー8.5keV

 図2 Evans Analytical Groupの(a)分析面積・分析濃度の関係と(b)分析深さを示すチャート(2010年)^{4,5)} (ナノサイエンス(株)のバブル・チャートより許諾を得て改変、ナノサイエンス(株)はEvans Analytical Groupの日本法人)

> 2,000nm

(a) 分析面積と検出下限の関係

図3 2002年版の図2と同じバブル・チャート

表1 図2、3に現れる主要な表面分析法

分析法の呼称	意味
AES	オージェ電子分光
EDS, EDX	エネルギー分散型X線分光 (分光・検出法を指すのであって必ずしも表面分析法ではない)
ESCA	XPS と同じ意味
FTIR	フーリエ変換赤外分光
GDMS	グロー放電質量分析
ICP	誘導結合プラズマ (表面分析ではなく水溶液の分析法)
LA-ICPMS	レーザーアブレーション ICP 質量分析
RBS	ラザフォード後方散乱
SEM	走査電子顕微鏡
SIMS	2次イオン質量分析
TOF-SIMS	飛行時間型SIMS
TXRF	全反射蛍光X線
XPS	X線光電子分光
XRR	X線反射率

図4 SEM-EDXとSR-µXRFで同一黄砂粒子を同一検出器・同一実験 配置で測定した比較(未発表データ) の単色X線を100µmのビーム径に絞って水平に照射したと きの蛍光X線スペクトルである (1µm以下のビーム径にする ことも可能)。2000秒の積算結果である。試料は45°に傾斜 させてある。一方電子ビームでの測定は、電子ビームを鉛直 に入射させる以外は、検出器と試料の位置関係など同じ条件 で200秒積算した結果である。同じ検出器を用いて測定した 結果である^{6,7)}。試料とビーム (X線または電子線) と検出器 の位置関係は、電子ビームのほうがシンクロトロンビームよ りやや有利な幾何学配置になっているので(もともとSEM-EDXとして設計された装置をSR-XRFに用いたため) その点 を考慮する必要はあるが、Tiより軽元素側では電子ビーム励 起の方がシンクロトロン放射光励起より感度が良いことがわ かる。一方Tiより重元素側ではシンクロトロン放射光による 励起が有利であることがわかる。一般にシンクロトロン放射 光が高感度であるというのはこのことを指しているが、Al、 Si、S、Kなど軽元素を分析する場合には従来から実験室で 使われているSEM-EDXで十分であることがわかるであろう。

このような比較をしてみると、シンクロトロン放射光に比 べて従来の光源を用いた装置の方が感度が良いことがしば しばあることに気づく。例えば、われわれの研究室で最近開 発したポータブル型全反射蛍光X線分析装置⁸⁾は、1W~5W という懐中電灯並みの超低電力のX線管を用いて (X線回折 用の水冷X線管は1kW程度である)、定量下限として遷移金 属元素で10pgを達成した。SPring-8では特定の1つの遷移 金属に対して、もっとも励起効率がよくなる励起エネルギー のX線ビームを入射させ(従って他の元素は励起できないか、 感度が悪くなる)、入射光は散乱X線によるバックグラウンド を低下させるために単色化させ、なおかつ、検出に際しても バックグラウンドを下げるために結晶分光器を用いるという、 1元素だけを検出するためのチャンピオン・データを取得す るためだけの実験によっても1fgの定量下限をようやく達成 できるだけである⁹⁾。極表面元素分析においてはSPring-8の 強力なX線を用いても、上述の懐中電灯並みのX線管(5W) よりも高々4桁よくなったに過ぎない。しかも多元素同時検 出という蛍光X線の大きな特徴を犠牲にしてようやく達成さ れた検出感度である。上述の5WX線管の場合には軽元素を 除く全元素が同時分析可能である。

4 TRXPS

このように極限まで発達し一見停滞しているように見える 表面分析法であるが、われわれの研究室で最近改良・開発 した分析法として、上述のポータブル全反射蛍光X線分析 (TXRF)法と全反射X線光電子分光(TRXPS)法¹⁰をあげる ことができる。ポータブルTXRFについてはすでに上述した ように実用上はシンクロトロン放射光より優れた方法となっ ており、1fgという検出下限も、すべてを犠牲にして記録の ための単一元素検出に限定すれば近い将来実現可能な検出 下限である。

全反射X線光電子分光装置は今世紀に入って市販された ところであり、まだ十分な応用例はないが、シリコンウエハ を汚染する軽元素に対して分析感度が良いばかりでなく、そ の化学結合状態もわかるために、汚染の原因を究明すること も容易である。入射X線を単色化して試料にすれすれの入射 角度で入射させ、全反射させることで、光電子の固体内での 非弾性散乱によるバックグラウンドを低減させるとともに極 表面の分析を可能にするものである。多層薄膜の場合には、 入射角度を変化させるとX線の電場が強くなる深さを変える こともできる。例えば2層の界面でX線電場強度が極大とな るようにすることもできるため、多層膜材料の界面に局在し た微量元素分析などの応用分野が開けると期待されている。

5 表面分析法のパラドックス

透過型電子顕微鏡 (TEM) や走査トンネル顕微鏡 (STM) などの原子分解能の顕微鏡では、単原子の観察が可能で ある。このような高感度分析法ではしかし分析感度はよく ない。原子間力顕微鏡 (AFM) や走査型プローブ顕微鏡 (SPM)¹¹⁾では表面で1原子を転がしたり原子で文字を書いた りすることができるのにもかかわらず、1000×1000原子の表 面に1個の異種原子がある場合 (1ppm) でも検出できない。 一方、最近使われ始めたへアードライアー型ハンディー蛍光 X線分析装置では、プラスチック中の有害元素はppmまで容 易に分析できる。

異なる分析装置を用いる研究者が会する研究会でしばしば される質問として次のようなものがある。

- ●1原子が分析できる電子顕微鏡があるのに、ppb程度(原 子数に換算すると10⁹個程度になる場合が多い)の「悪 い」感度の分析法をいまさら開発しても無駄ではないか、 と言う質問。
- ●逆に、1原子が見えるという顕微鏡をもってしてもppmの濃度も分析できないのはなぜか、と言う質問。

じつはこれらのパラドックスは、表面濃度と体積濃度の違い を混同していることが原因であることが多い。しかし1原子 が見えるとしてもその感度は意外に悪く、このパラドックス があるゆえに現在も新しい分析法が開発されているというこ とが言えると思う。

6 キャラクタリゼーション

キャラクタリゼーションという分析用語がある。1967年米 国のNational Research Councilによる定義では、「キャラク タリゼーションとは材料の組成と構造さらに欠陥に関する情 報を集めて特徴を把握し、それを記述することである。その 特徴というのは材料の製造、それの物性研究あるいは応用化 に当たり重要であり、かつ材料の再現性のある生産に十分役 立つものでなければならない」と和訳されている¹²⁾。そのこ ろ、固体物性の研究に莫大な人手と時間と経費をかけていた にもかかわらず、物性測定は材料開発には直接役立たなかっ たという反省からこの定義は生まれた。このような裏の事情 を知らなければ、上述のキャラクタリーゼーションの定義の 真の意味は理解できない。「固体物性 | 研究がキャラクタリ ゼーションという新概念によって否定された後は、1970年ご ろから「表面物性」の研究に約30年間にわたって莫大な研究 費がつぎ込まれた。それにもかかわらず、「表面物性」からは 何も実用的なアウトプットが得られなかった。この反省から、 十年ほど前に表面研究に対する研究費が日米で大幅に削減さ れた。これは上述のキャラクタリゼーションの定義制定の裏 事情に類似している。このとき「表面|に代わって登場した のが「ナノ」であった。シンクロトロン放射光を用いた研究に ついても同じことの繰り返しにならないよう期待したい。

ろ おわりに

研究開発のさまざまな場面で使われている表面分析法の 多くは、その空間分解能・検出感度・表面敏感性に関してす でに10年以上前から極限に達して最近では原理的に大きな 進歩はなく、飽和状態・停滞期もしくは安定期に入っている ことを述べた。従ってさまざまな表面分析装置は、その根本 性能の進歩はないが、使い勝手などの点での機能が進歩し ている。この性能の停滞を突破すると期待されたシンクロト ロン放射光は一部では円偏光・高エネルギーX線・X線吸収 分光・共鳴X線ラマン分光などの手法の進歩はあるにはあっ たが、機器分析装置の性能を向上させるまでには至っておら ず、とりわけ大型施設であるため汎用的ではない。また極表 面分析に限らず、従来の装置に比べて意外に感度や空間分 解能が悪く、チャンピオンデータに惑わされないようにする ことが重要である。今後シンクロトロン放射光が当初の期待 に応えてブレークスルーを達成するのを待ちたい。また電子 ビームやイオンビームの性質を知って適切に用いれば、十分 な表面分析が可能となることを指摘したい。表面分析法のパ ラドックスの原因を明らかにできれば新たな進歩の可能性も 大きいと思う。

謝辞

図版の和訳と転載を許諾いただいたEvans Analytical Groupとナノサイエンス(株)新宮一恵氏に感謝します。

参考文献

- R.P.ファインマン著, 釜江常好, 大貫昌子訳:光と物質 のふしぎな理論-私の量子電磁力学, 岩波, (1987)
 第2章; R.P.Feynman: QED, The Strange Theory of Light and Matter, Princeton University Press, New Jersey, (1985)
- 2)標準化学用語辞典,日本化学会編,丸善,(1991)
- 3) 斉藤伸, 高崎通崇, 石橋信一, 戸澤好人, 小野寺政信, 高橋研:真空, 53 (2010), 521
- 4) Evans Analytical Group Web サイト http://www.eaglabs.com/files/literature/BR004.pdf
- ナノサイエンス社Webサイト http://www.nanoscience.co.jp/bubble_chart/index.html バブルチャートの詳しい見方の説明もあり。
- 6) 河合潤,石井秀司: J.Surf. Anal., 12 (2005), 384.
- 7) J.Kawai, H.Ishii, Y.Matsui, Y.Terada, T.Tanabe and I.Uchiyama : Spectrochim.Acta, Part B, 62 (2007) 677.
- 8) S.Kunimura and J.Kawai : Analyst, 135 (2010), 1909.
- 9) K.Sakurai, H.Eba, K.Inoue and N.Yagi : Anal.Chem., 74 (2002) , 4532.
- J.Kawai : J.Electron Spectrosc. Relat. Phenom., 178-179 (2010), 268.
- 森田清三:走査型プローブ顕微鏡-最新技術と未来予測, 丸善, (2005)
- 12) 鎌田仁:最新の鉄鋼状態分析,アグネ (1979),3.

(2010年10月14日受付)