

特集記事 • 10

こまできた鉄鋼の計測・制御・システム技術

fにおける技能継承活動支援のためのeラーニング活用事例

e-Learning Use Case for a Skill Succession Activity Support in Ironworks

(株) 神戸製鋼所 生産システム研究所

江部宏典 Atsunori Ebe

(株) 神戸製鋼所 加古川製鉄所 主任部員

前田昌宏 Masahiro Maeda

(株) 神戸製鋼所 加古川製鉄所

宮原 - Hajime Miyahara 生産システム研究所 主任研究員

(株) 神戸製鋼所 宗陽一郎 Youichiro Sou

(株) 神戸製鋼所 加古川製鉄所 主任部員

宮長貞行 Sadayuki Miyanaga

<1₃

はじめに

近年、製造現場でのベテランから若手への技能継承が重 要な経営課題となっている。(株)神戸製鋼所においても、 現場での世代交代が進む中OJT (On the Job Training) によ る指導者側の十分な指導時間が取りにくい点、指導者の教育 負荷が増加傾向にある点などから、技能継承の効率的推進に 向けて試行錯誤を重ねているのが現状である。

江部ら1-4)は、指導者が若手を対面で指導するOITでの教 育において、指導者の実技指導による教育効果を最大限に引 き出すため、その前提となる基礎知識の予習やフォロー教育 などでIT (eラーニング) 活用を推進している。

本稿では、加古川製鉄所における技能継承活動支援のた めのeラーニング活用事例について紹介する。

IT活用のコンセプト

現場にて、手軽でかつ自立的に活用可能な教育システムを 構築することにより、職場内での人材育成が効率化され、技 能継承活動も活性化し促進されると考える。

また、一般的にOJTは座学 (知識学習) と実技指導から構 成されるが、座学部分をeラーニングに置き換えることで、 指導者にとって時間的な余裕が生まれ、技能継承活動推進 上の課題となる指導者の教育負荷軽減が図れると考える。こ れにより、指導者が対面形式での実技指導に注力でき、教育 の質自体も高まるものと思われる。

上記IT活用のコンセプトの下、現場による、現場のための、 eラーニングを実現することとした。

技能継承に関する推進上の課題

加古川製鉄所では技能継承の推進のため、技能継承プロ

ジェクトを2003年に発足した。本プロジェクトでは全所あ げての活動として、技能マップの作成、技能継承道場の開 設、技能競技大会の定期的開催などに取り組んできた。また、 「標準文化の再構築」をスローガンに掲げ、判りやすい作業 標準の整備やその周知徹底の活動を推進するため、標準管 理システムなどを構築してきた。

しかしながら、若手の作業標準の誤解釈によるヒヤリ事故 などは皆無ではない。その背景として、操業が逼迫する中、 主に作業標準を用いた読み合わせによる教育だけでは十分で はないことが挙げられる。そこで、作業標準教育でのCheck 機能をeラーニング活用により補強してゆくことが課題と考 えた。

作業標準教育の重要性

作業標準は社内の規定により3年に1回の定期的な見直し が義務付けられている。その中で「安全」の観点から特に危 険な作業を伴うものについては、各職場でのルールにより1 年に1回の定期的な見直しが実施されている。

また、作業標準は製造現場での日常業務の基本でもあり、 現場ではこれを用いてOJT教育が行われている。ベテランの 技能は日々のOJT教育を通じて若手へ継承されてゆくもので ある。

作業標準教育でのCheck機能の補強によって、周知徹底 の強化が図られるだけではなく、技能継承のためのOIT教育 の支援にも繋がると考えている。

5.1 作業標準教育での周知徹底の強化

作業標準に関するテスト問題 (以降e問題と略す) 作成ツー

ル、デジタル図書館ツールから構成されるeラーニングを開発した。

(1) 作業標準からe問題をかんたんに作成できるe問題作成 ツール

作業標準(図1.1参照)を題材に、本文書の中で着目すべき箇所やキーワードを虫食いにした択一形式のテスト問題を 作成できる、e問題作成ツールを開発した。e問題の作成は、 作業標準の着目箇所やポイント箇所をマーカーで塗る要領でマウス操作するだけの簡単なものである(図1.2参照)。これにより、テスト問題作成の現場負担を軽減できる仕組みになっている。

また、製鉄所内の一部でインフラが未整備な職場でも活用 可能とするため、虫食い個所のみを集めたポイント集やテス ト問題を紙で配布できる資料も自動生成することにより、全 所共通ツールとして導入可能とした。

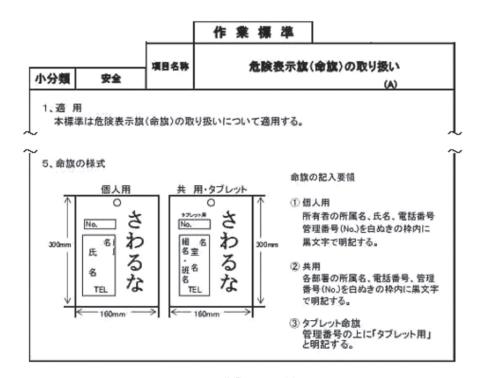


図1.1 作業標準の一例

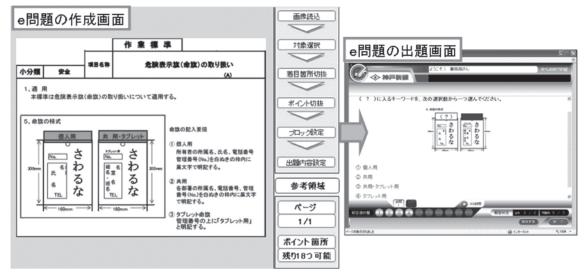


図1.2 e問題の作成および出題画面の例

(2) e問題の学習実績管理と職場間での教材共有化ができる デジタル図書館ツール

e問題をWebサーバ上にカテゴリー化しデータ登録後、いつでも利用可能なe問題学習環境を実現し、作業標準教育の実績管理が簡単にできる、デジタル図書館ツールを開発した(図2.1参照)。同ツールでは、指導者が周知させたいe問題

を登録するだけで学習者が学習を進められ、また指導者が周知状況を定量的にCheckすることにより、周知徹底の強化を図ることができる。

さらに、職場間でe問題を公開し全所で共有化できる仕組 みも構築した(図2.2参照)。これにより、全所あげての活動 として推進できるようにした。

図2.1 いつでも利用可能なe問題学習環境

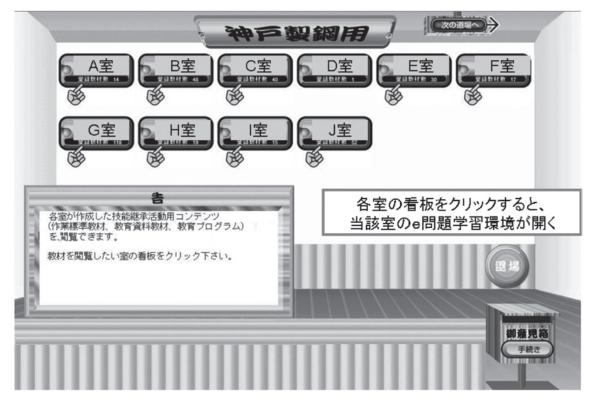


図2.2 職場間で共同利用ができる仕組みの一例

5.2 作業標準を用いたOJT教育を支援するための教育プログ ラムツール

指導者がデジタル図書館から複数のe問題やポイント集テ キストを任意に組合せて教育プログラムを作成できる、教育 プログラムツールを開発した(図3参照)。同ツールでは、指 導者はOJT教育で必要な基礎知識に関する学習者の理解状 況や弱点分析結果などをCheckできる。学習者の理解度に 応じて指導することにより、フォロー教育の効率化も図るこ とができる。

また、教育プログラムを教育の目的や学習者のレベルなど に応じて体系的に構成することにより、共通教育や階層別教 育などの教育カリキュラムとしても活用できるようにもなっ ている。

教育カリキュラムの定期的な見直しなどを通じて、ITを活 用した持続的な人材育成 PDCA サイクルをまわせる仕組みに 発展させてゆくことが期待できる。

6 eラーニング導入

(1) 導入方法

一部の職場を除き、日常業務でパソコンに触れる機会が少 ない状況を踏まえ、プロジェクト事務局のリーダーシップの 下、次のように進めて行った。

導入にあたっては、パソコンに触れる機会の少ない職場で のパソコンに対する抵抗感を払拭するため、eラーニングを 活用した作業標準教育を体感してもらうことにした。各職場 のキーマンを選出した上で、安全や環境防災などの全所共通 的な内容を題材に全所一斉eラーニング教育を実施した。こ れにより、若手にはeラーニングによる学習を体験してもら い、指導者には部下の学習状況を把握する管理機能を体験 してもらうことで、eラーニングの現場への紹介、周知を図っ

次に、技能継承活動の一環として各職場でe問題作成の目 標件数を掲げ、その目標達成に向けて、各職場のキーマンに 対して、e問題作成ツールとデジタル図書館ツールの講習会 を随時開催し、現場での自立的なeラーニング活用へと繋げ ていった。

(2) 導入結果

導入後一年経った時点で、全職場のほぼ全てがe問題を登 録しており、約6割の職場では「安全 | を中心にeラーニング を活用した作業標準教育が平均月1回ペースで実施されてい る。積極的な活用が見られる各職場のキーマンに対して導入 後の状況をヒアリングした所、作業標準教育での動機付けや 理解度の確認などを簡単にすることができた、という肯定的 な意見を得ることができた。これによりeラーニング導入は 一定の効果があることを確認できた。

一方で、e問題作成では負荷は感じないものの、職場内で のeラーニングを効率的に推進するための運用機能の改善 ニーズがあがっている。さらに、作業標準の記載項目に関す る背景情報、「なぜ」に相当する解説や補足資料を付加した いという教材作成面のニーズや、個別指導を支援するための 機能改善ニーズもあがっている。

現状、eラーニングを十分に活用し切れていない職場もま

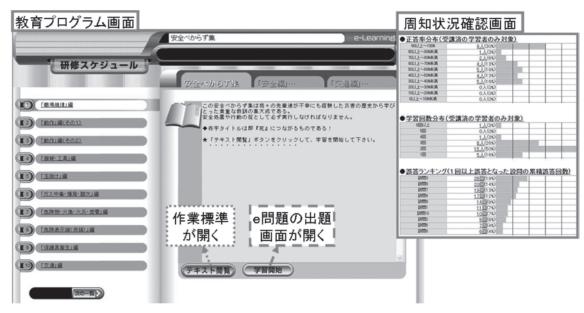


図3 教育プログラムと作業標準の周知状況確認画面の一例

だあり、全所あげての活動として推進してゆくため、今後こ れらのシステム改善を行ってゆく計画である。

また、今後は安全や環境防災といった全所共通的な内容を 題材に、所内階層別教育への適用も検討中である。

7 おわりに

本稿では、加古川製鉄所における技能継承活動支援のた めのIT (eラーニング) 活用事例について紹介した。

e ラーニングの活用により、作業標準教育での Check 機能 を補強し、職場内でのOJT教育の支援を実現した。これによ り、持続的な技能継承を推進してゆくための基盤が整備でき、 安定操業や品質向上に繋がるものと期待している。今後も製 造現場でのIT活用ニーズを掘り起こしながら新たな機能開 発を進めてゆく。

参考文献

- 1) 宗陽一郎, 江部宏典, 中村英夫:第22回全国大会講演 論文集, 日本教育工学会, (2006), 39-42.
- 2) 宗陽一郎, 江部宏典, 中村英夫:システム/制御/情報, システム制御情報学会誌, 52 (2008) 4, 136-141.
- 3) 江部宏典, 宗陽一郎: 材料とプロセス, 21 (2008) 1, 282.
- 4) 宗陽一郎, 江部宏典, 福村修士, 楢崎博司:第35回全 国大会,教育システム情報学会,(2010),305-306.

(2010年11月30日受付)