解説 受賞技術-10

コークス炉炭化室炉壁の高精度診断・補修技術の開発

Development of Diagnosis and Repairing Technology for Coke Oven Chamber Wall

新日本製鐵 (株) 環境・プロセス研究開発センター グループリーダー

^{載 (株)} 境田道隆 _{2ンター} Michitaka Sakaida

新日本製鐵 (株) 環境・プロセス研究開発センター 部長

加藤健次 Kenji Kato

よ緒言

高炉用コークスは石炭をコークス炉に装入して乾留して 製造する。現在、わが国で稼働中のコークス炉のほとんどは 1970年代に集中的に建設されており、平均炉令は約36年で ある。

コークス炉の老朽化に伴って、コークス炉の炭化室炉壁の 損傷が増加している。コークス炉の炉壁に大きな損傷が発生 すると、コークス炉で石炭を乾留した後にコークス炉内から 押出す際の抵抗が大きくなり、押詰りなどのトラブルが発生 する。このため、従来はコークス炉作業者が高温のコークス 炉内の炭化室炉壁を炉外から目視で観察し、得られた情報を 経験に基づいて解析し、炭化室炉壁損傷部の補修を行ってい た。しかし、コークス炉劣化の進行に伴って、従来の人手に よる観察および補修では十分な対応が困難となっている。こ のため、炭化室炉壁損傷部を高精度、かつ定量的に診断して、 効率的な補修を行う技術の開発が非常に重要な課題である。

このような背景から、新日本製鐵(株)は、コークス炉炭 化室炉壁を高精度に診断し、かつ効率よく補修する技術を開 発した。この診断・補修装置は通称DOC(Doctor Of Coke oven)と呼ばれており、新日本製鐵(株)のコークス炉に設 置されている。本稿では、コークス炉炭化室の高精度診断・ 補修装置について述べる。

·クス炉の炉壁損傷メカニズム

コークス炉における石炭乾留(コークス化)サイクルの概 要を図1に示す。コークス炉では、石炭装入~乾留~コークス 押出しを約20時間毎に繰り返しており、例えば30年間では ひとつの炭化室あたり約13,000回の乾留作業が行われる。図

* 第55回大河内賞生産賞受賞技術

2に示すように、コークス炉は石炭を装入する炭化室と加熱 ガスを燃焼させる燃焼室が交互に配置されており、炭化室内 は珪石煉瓦の炉壁を介して、燃焼室側から間接的に加熱され る。炭化室は幅約450mm、高さ約6.5m、長さ約16m程度の狭 小な構造である。炭化室の炉壁は、乾留サイクルにおいて加 熱と冷却(石炭装入時に発生)の繰り返しによる熱負荷を受 けるとともに、コークス押出時に機械的荷重を受ける(図3)。

杉浦雅人

Masato Sugiura

新日本製鐵(株)

主幹研究員

環境・プロセス研究開発センター

図1 コークス炉操業と炉壁損傷の関係

図2 コークス炉構造の概要

コークス炉損傷トラブルの例を図4に示す。炉壁が受ける 熱衝撃によって煉瓦に亀裂などの損傷が発生する。また、炉 壁の耐力よりも炉壁に掛かる圧力が高い場合には、コークス 炉の煉瓦の脱落(破孔)が発生する。コークス炉稼働年数の 増加に伴って炭化室炉壁の壁耐力が低下し、コークス押出時 に炉壁に掛かる圧力とのバランスによって、コークス炉壁損 傷が増加する(図5)。

従来のコークス炉炭化室の補修技術は、炉壁に損傷が発生 した場合に炉外から長尺のパイプを用いて補修材を溶射する 方法が実施されている。診断の対象となる炉壁は約1000℃の

図3 コークス押出時の炉壁荷重の概要

図4 コークス炉損傷トラブルの例

図5 コークス炉の経年劣化イメージ

高温条件で、炉幅が狭く、奥行きが長いために、目視による 観察では十分な炉壁損傷状況の評価は不可能である。また、 人手による炉壁補修では、炉壁に発生した凹凸を精度良く補 修することができないため、コークス押出時に炉壁に掛かる 荷重が増加し、コークスの押詰りおよび炉壁煉瓦の脱落(破 孔)トラブル発生頻度増加の原因となっている。

そこで、炭化室炉壁を高精度に診断するとともに、診断情 報に基づいて炉壁の損傷箇所を補修する装置の開発に取り組 んだ。

(3) 技術開発内容

3.1 炉壁診断技術

はじめに、炉壁診断装置について述べる。コークス炉内の 高温条件下で炭化室炉壁全面を高精細に撮像し、炉壁表面の 凹凸形状を計測する大掛かりな耐熱診断プローブの開発に取 り組んだ1-3)。図6に示すように、診断プローブは片側の窯口 から長さが約16mある高温の炭化室内に挿入される。診断プ ローブ先端には4台のラインCCDカメラが搭載されている。 ライン CCD カメラとは、光検出素子を一列に配置して線状の 観察視野を得る撮像装置である。線状視野を炉壁縦方向にし て炉内に送り込み、1mmピッチで撮影した炉壁自発光のライ ン信号をメモリ上に並べて蓄積して2次元の熱画像を作成す る(図7)。炉幅が狭いためカメラで炉壁を直視すると炉壁を 鋭角にみることになり、診断プローブの炉幅方向の揺れや蛇 行によって観察位置が大きく変化して画像に歪みが生じる。 この対策として、表面を鏡面加工した金属管のミラーをカメ ラの視野前方に設置して炉壁を垂直に観察する。金属管の内 部に冷却水を流してミラー表面の高温酸化を防止している。

診断プローブのもう一つの機能が炉壁の凹凸測定である。 図8に示すように、ラインCCDカメラの線状視野に上下斜

め方向からレーザー光を照射して、炉壁の熱画像にレーザー 像を重畳させて凹凸計測を行う方式を考案した。画像上では レーザー像が水平方向のラインとなり、凹凸箇所でラインが 上下に変位する。レーザー出射角度や視野サイズ等の幾何 学的条件から三角測量の原理で凹凸量を知ることができる。 レーザーは煉瓦一段間隔で高さ方向に複数照射して炉壁の面 的な凹凸情報が得られるようにした。画像と合わせて凹凸を 捉えるこの方式は、炉壁損傷部位の煉瓦状態が一目瞭然にわ かるという優れた特徴を有する(図9)。

炭化室診断時に炉壁温度が大幅に低下することを防止す るため、診断プローブは炭化室内を約4分間で迅速に往復し て炉壁画像を取得する。冷却水とパージガスによって診断プ ローブの内部は40℃以下に維持されている。カメラとレー ザーは左右に旋回する機構で取り付けられており、往路と復 路で左壁、右壁を切り換える。画像解像度は炉長方向1mm、 炉高方向1.4mmで、壁面の亀裂等の煉瓦損傷を精細に観察で きる。炉壁凹凸量の測定精度は補修判断の情報として十分な

図7 炉壁撮像方法

±2~3mmである。診断情報として、画像データに加え、炉 壁全面の凹凸状態を表した3次元プロフィールデータが得ら れる。これらの情報に基づき1炉団に約100室ある炭化室個 別の損傷状況を的確に把握し、補修計画策定に活用する。

3.2 炉壁補修技術

炉壁診断データを基に、炉壁に大きな側圧が生じる陥没箇 所が特定される。炉壁を高温に維持したまま補修する方法と しては、従来から溶射補修が行われてきた。この方法は、煉 瓦壁面に珪石粉体を融着施工するものである。しかし、従来 の人手作業の方法では、精度良い溶射を安定的に行うことは 非常に困難であった。そこで、新しい補修技術として、炉壁 煉瓦と溶射体間で良好な接着状態を形成するための理想的な 施工条件、即ち、溶射バーナーと対象面との適正溶射距離と 噴射角度90°を維持した安定施工を行い、補修面仕上がり平 坦度±5mmを可能とする高精度補修技術の開発を目指した。 溶射施工条件を維持しつつ、高い仕上がり平坦度を実現する ためには下記の技術の開発が必要となる。

①炉壁損傷形状の定量的かつ精緻な計測、

②損傷形状に応じた溶射補修が可能な集束型溶射バーナー、
 ③形状計測に基づいて平坦に溶射施工を行うアルゴリズム、
 ④上記を実現するための高精度補修マニピュレータ

上記の課題のうち、最も重要な技術は高精度補修マニュピ レータの開発である。補修用のマニピュレータをコークス炉 外から駆動する方法として、人力作業の延長線上の技術開発 は過去にも取り組まれているが、アームの撓みや振動から高 精度な制御が困難であった。そこで、長さ2~3mの短いリ ンクアームと関節構造の組み合わせで剛性を確保した多関 節マニピュレータを炉内に挿入し、補修部近辺の炉底に脚で 自立させる方式を検討した。1200℃の高温環境で多関節構造 を駆動させた例は無く、複雑な構造を安定かつ均一に冷却で

図9 炉壁凹凸形状の測定例

きるかが最大の課題であった。検討を重ねた結果、高温間条 件での高精度補修マニピュレータを開発した。装置の概要を 図10に示す^{4,5)}。炭化室の幅が約450mm程度と狭いために、 補修装置の幅を寸法制約上限として、両側の炉壁と十分なク リアランスを確保するように設定した。機体は断熱材で被覆 した水冷パネルによる高剛性の外骨格構造とし、機体内部に 電気計装配線や給排水ホース、溶射用粉体やガスのホースを 通している。先端に炉壁形状計測装置と溶射バーナーを装備 し、サーボモーターで駆動する3関節によって繰り返し位置 決め精度±1mmを実現、溶射バーナーの高精度な位置およ び速度制御を可能とした。水冷パネル外面に貼付した断熱材 は、機体の熱的保護だけでなく、抜熱による炉壁の過冷却を 防止しており、コークス炉内に3時間滞在させて補修を実施 後の炉壁温度は700℃以上に維持可能である。

図11に炉壁補修前後の炉壁の鳥瞰図を示す。補修前は損

図10 炉壁補修装置の概要

図11 補修による炉壁平滑化の例

傷深さとして、最大約45mmの凹みが存在していたが、補修 後は横断面および縦断面とも目標の±5mm以内の精度で平 滑化されている。補修時間は予定した時間内に収まり、迅速 かつ高精度の補修が可能となった。

今回開発した炭化室炉壁診断および補修装置を用いること により、炭化室壁面を高速かつ定量的に診断し、診断結果に 基づいて炉壁を迅速かつ高精度に補修する技術が開発され た。本装置を用いて損傷部を補修した炭化室では押出負荷が 低減され、その結果、コークス炉操業の安定化に大きく貢献 している。

4 結言

コークス炉炭化室炉壁全体を精度良く診断し、診断デー タに基づいて高精度な補修を行う装置 (DOC) を開発した。 コークス炉炭化室の炉壁損傷状況の把握は、以前は主に熟練 工の目視観察に頼っていたが、本診断装置の導入により観察 精度が飛躍的に向上するとともに、効率的な補修作業を可能 とした。

今後、益々コークス炉の老朽化が進行する中で、コークス 炉の安定生産に貢献しながら、コークス炉の寿命延長に貢献 する技術として大きく期待されている。

参考文献

- 1) M.Sakaida, M.Yokomizo, T.Kajiya, M.Sugiura and J.Nakashima : Proc. 61st Ironmaking Conf. (2002), 363.
- M.Sakaida, M.Sugiura, T.Kajiya, M.Yokomizo,
 Y,Nakashima and T.Noguchi : CAMP-ISIJ, 15 (2002) ,
 178.
- H.Egawa, M.Yokomizo, M.Sakaida, M.Sugiura, J.Nakashima and T.Noguchi : Proc.3rd ICSTI, (2003), 271.
- 4) T.Noguchi, Y.Awa, M.Sakaida, J.Nakashima, M.Sugiura and M.Yokomizo: Proc.4th ICSTI, (2006), 378.
- 5) 入江敬介, 安倍郁, 杉浦雅人, 境田道隆: CAMP-ISIJ, 23 (2010), 66.

(2011年5月31日受付)