ふえらむ

Vol.17/No.11/2012

(一社)日本鉄鋼協会会報

ISSN1341-688X

Bulletin of The Iron and Steel Institute of Japan

構造用金属材料の新たな挑戦 ヘテロ構造制御に基づく新指導原理構築 Part 1

鉄と銅

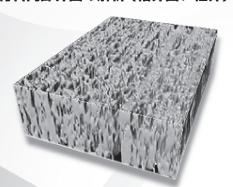
Tetsu-to-Hagané-

Vol.98/No.11/2012

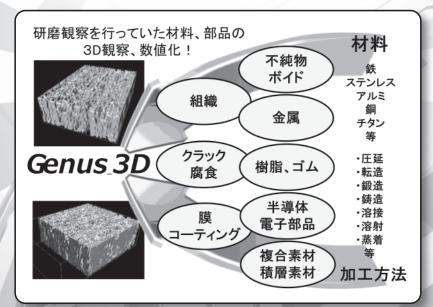
ISSN0021-1575

-般社団法人 日本鉄鋼協会

The Iron and Steel Institute of Japan http://www.isij.or.jp



材料内部の3D観察、3D数値化が可能に!


光学顕微鏡、測定用高精度レーザー、湿式研磨装置、操作PC搭載により速度や荷重などの研磨条件を 自由に設定でき、研磨、エッチング、洗浄、観察までを繰り返す一連の組織観察過程の全自動化が可能 になりました。観察画像を自動的にPC取り込み、3次元化等データーの応用が容易です。 清掃も簡単で劇的な時間短縮につながります。

<主な用途>

- 単相、複相組織解析
- 材料の破壊機構解明(ボイド、亀裂)
- ・欠陥評価(介在物、空洞など)
- 材料内部界面の解析(相界面、粒界)

主な仕様 ・対応試料 金属、無機材料等(研磨可能な物に対応) ・試料サイズ 樹脂固定 円形試料(標準1インチ)

• 試料研磨量測定 分解能0.01 μ • 本体寸法 W860mm×H630mm×D540mm

国内総販売元

新興精機

〒812-0054 福岡市東区馬出一丁目18番3号

〒812-0054 福岡市東区馬出一丁目18番3号 TEL: 092-641-8451 FAX: 092-641-8786 担当: SAM課・堀ノ内 Email:horinouchi@shinkouseiki.co.jp http://www.shinkouseiki.co.jp

Vol.17 (2012) No.11

C O N T E N T S

目 次

特集「構造用金属村	オ料の新たな挑戦 ヘテロ構造制御に基づく新指導原理構築 Pa	irt]
日本のものづくり力	世界をめぐる精密加工-超小型ベアリング	··· 732
Techno Scope	ヘテロ構造制御が拓く新たな鉄鋼材料の可能性	·· - 735
特集記事	調和組織制御によるヘテロ構造を有する構造用金属材料の組織と機械的性質	45-
	能山 惠、関口達也、藤原 弘、張 喆 ······	··· 739
	パーライト鋼の変形挙動に関する材料科学と固体力学からの検討 ~高強度・高延性両立の指導原理の探求~	
	下川智嗣、大橋鉄也、田中將己、東田賢二	··· 745
	超高強度自動車用部材製造のためのホットスタンピングプロセスに おける組織制御	
	瀬沼武秀、竹元嘉利、清水憲一、北條智彦	··· 751
	塑性加工に伴う鉄中Cu粒子の変形と分解 〜軟質分散粒子のヘテロ→ホモ構造変化の可能性〜	-
The state of the s	土山聡宏、波多 聰、諸岡 聡、村山光宏	··· 759
	摩擦攪拌現象を用いたインプロセス組織制御による マクロヘテロ構造体化技術	
	藤井英俊	··· 763
	超微細粒強化と時効析出強化を並立させる 新規アルミニウム合金展伸材の開発とその合金設計指導原理の確立	
	廣澤渉一、濱岡 巧、堀田善治、李 昇原、松田健二、寺田大将	··· 769
入門講座	鋼の防錆・防食技術-8 高強度鋼の耐食性及び耐環境脆化の改善技術	
	中山武典	··· 775
躍動	格子欠陥の振る舞いに学ぶ	
	下川智嗣	··· 782
協会の活動から		··· 786
会員へのお知らせ …		 789
海外鉄鋼関連最新論	文	···· 812

ホームページ http://www.isij.or.jp

編集後記

厳しかった残暑も終わり、秋の清々しい季節を迎えたと思ったら、早いもので今年も残すところあと2ヶ月。一日の仕事を終える時間には外はもうすっかり暗くなっていますが、街路樹には綺麗なイルミネーションが灯り、街は早くもクリスマスムードいっぱいの今日この頃です。これからの季節、木々たちも鮮やかな紅葉を身にまとい、街行く私たちの目を楽しませてくれることでしょう。

さて、本誌11月号と次号12月号では「ヘテロ構造」にスポット を当て特集記事を企画、その分野の第一人者の方々に研究の最 前線について解説して頂きました。「ヘテロ」という言葉自体、 鉄鋼材料ではまだ馴染みが薄いのかもしれませんが、身の回りで もまだ理屈のわからない現象の解明など、材料開発にも革命的ブ レークスルーをもたらすような、秘めた力を持った奥深いテーマ です。

読者の皆さんも、そんなロマンと好奇心に溢れる独創的な研究 テーマについて思いを巡らせてはいかがでしょうか。

(N.F.)

会報委員会 (五十音順)

委員長 森田 一樹(東京大学)

副委員長 上島 良之(新日鐵住金(株))

顧問 細谷 佳弘((株)特殊金属エクセル)

委 員 小野 嘉則 (物質·材料研究機構) 大野 宗一 (北海道大学) 神戸 雄一 (日本冶金工業 (株))

梶野 智史 (産業技術総合研究所) 杉本 卓也 (愛知製鋼 (株)) 高谷 英明 (三菱重工業(株)) 寺岡 浩 (大同特殊鋼 (株)) 戸高 義一 (豊橋技術科学大学) 野崎 精彦 (UDトラックス (株))

早川 朋久(東京工業大学) 林 幸(東京工業大学) 藤本 延和(日新製鋼(株))

船川 義正 (JFEスチール (株)) 前田 恭志 ((株)神戸製鋼所) 森 善一 (新日鐵住金(株))

三木 貴博(東北大学) 山内 昭良(日本鉄鋼協会)

ふえらむ/鉄と鋼 合本誌 定価 4.000円(消費税等込・送料本会負担)

Bulletin of The Iron and Steel Institute of Japan/Tetsu-to-Hagané: Unit Price \(\forall \)4,000 (Free of seamail charge) 1996年5月10日第三種郵便物認可 2012年10月25日印刷納本、2012年11月1日発行(毎月1回1日発行)

編集兼発行人 東京都中央区日本橋茅場町3-2-10 鉄鋼会館5階 (一社)日本鉄鋼協会 専務理事 小島 彰 Tel:03-3669-5933 Fax:03-3669-5934(共通)

(会員の購読料は会費に含む)

印 刷 所東京都文京区本駒込3-9-3 (株)トライ

©COPYRIGHT 2012 一般社団法人日本鉄鋼協会

複写をご希望の方へ

本会は、本誌掲載著作物の複写に関する権利を一般社団法人学術著作権協会に委託しております。

本誌に掲載された著作物の複写をご希望の方は、(一社)学術著作権協会より許諾を受けて下さい。但し、企業等法人による社内利用目的の複写については、当該企業等法人が社団法人日本複写権センター((一社)学術著作権協会が社内利用目的複写に関する権利を再委託している団体)と包括複写許諾契約を締結している場合にあっては、その必要はございません(社外頒布目的の複写については、許諾が必要です)。

権利委託先:一般社団法人学術著作権協会

〒107-0052 東京都港区赤坂9-6-41 乃木坂ビル

TEL.03-3475-5618 FAX.03-3475-5619 E-mail:info@jaacc.jp

複写以外の許諾(著作物の引用、転載、翻訳等)に関しては、(一社)学術著作権協会に委託致しておりません。

直接、本会へお問い合わせください。

また、アメリカ合衆国において本書を複写したい場合は、次の団体に連絡して下さい。

©Copyright Clearance Center,Inc

222 Rosewood Drive, Danvers, MA01923 USA

TEL.1-978-750-8400 FAX.1-978-646-8600

84

814

🦃 鋳造・凝固シミュレーションシステム CPRO

最新情報 June 2012

CPROは鋳造・凝固に精通した材料工学エンジニアが壮大な構想の下に長年の歳月をかけて開発したソフトウエアです。 本ソフトウェアには鋳造現場10年以上の経験と最新の凝固理論に立脚した"PHYSICAL METALLURGY"の本質が備わっ ています。

■CPROの特徴

対象とするプロセス及び物理現象:

鋼及びアルミ合金、銅合金等の非鉄合金の連続鋳造:V偏析、 マクロ偏析、ポロシティ、オシレーションマークに代表 される表面欠陥、 エアギャップの形成、凝固と変形・応力との連成問題

大型鋼塊、ESR、Ni基超合金の一方向凝固等の特殊鋳造: 押湯引け巣、V偏析、マクロ偏析、チャンネル偏析、ポロシティ

これら種々の欠陥の形成過程を追跡し究明することが可能であり、問 題の解決に役立ちます。また、新しい鋳造プロセスの研究・開発のた めの強力なツールを提供するものです。

及固現象: 非線形多元合金モデルまたは相計算プログラム CALPHAD とのインターフェースによる温度と固相率の関係、エネル ギー式、溶質再分布式、Darcy 流れ及び運動方程式等を最新の凝固 理論に基づいて展開し、ミクロスケールにおけるデンドライト凝固現象 とマクロスケールにおける熱、溶質の拡散及び液相流れ現象を連成さ せた。さらに鋼の連鋳では鋳片の塑性変形、相変態も考慮。

カ学的挙動:内部状態変数理論に基づく粘塑性構成方程式を用い とFEMにより連続鋳造における応力・変形状態を精度良く解析。

電磁場解析:電磁場の影響を考慮した凝固解析。

■凝固解析機能

以下7段階の解析機能を持っています。

レベル1:凝固・温度計算 レベル2: Darcy 流れ計算

レベル3:レベル2+ポロシティ解析 レベル4: Darcy 流れ+マクロ偏析 レベル5:レベル4+ポロシティ解析

レベル6: 運動方程式による流れ + Darcy 流れ + マクロ偏析

レベル7:レベル6+ポロシティ

ミクロスケールからマクロスケールまでの現象を解析

最高レベル7はエネルギー式+温度と固相率の関係式+溶質再分布式+運動方程式+Darcy 式の連成解析によりDAS、マクロ引け巣、 ミクロポロシティをはじめ種々のマクロ偏析(チャンネル偏析を含む)の 形成過程を計算します。固溶ガスの影響、相変態等も解析可能。

■計算実績

1989年、基本ソフト「多元合金鋼塊のマクロ偏析」の開発以来発展を 続け100例以上の計算実績を積んでいます。

連続鋳造:鋼、特殊鋼、ステンレス鋼、アルミ合金、銅合金 普通鋳造:大型鋼塊、鋳鋼、特殊鋼、アルミ合金、亜鉛合金 特殊鋳造:ESR、一方向凝固

一方向凝固品のフレックル欠陥を再現

ー方向凝固法による単結晶タービンブレードにはフレックル (チャンネル偏析)、ミクロポロシティあるいは不整方位結晶欠 陥などの鋳造欠陥が生ずる。図1はレベル7解析によって Ni 合金角インゴット端面に生じるフレックルを解析したもの(解析 レベル7).

₹ 11.7200 図 1 11.3727 (b) XX' cross section 9.6363 11 0254 10.6781 (a) Vertical section at the end of Y dir. 10.3309 9.9836 9 6363 9.2890X' 11.8400 11.4646 11.0891 10.7137 9.9629 10.3383 10.7137 10.3383 9.9629 等の詳しい情報については 9.5874 Magnified x2 in transverse dir. 9.2120

M プロセス:無欠陥一方向凝固品の新製法

Mプロセスの原理: 一方向凝固方向に静磁場を印加することによりフレック ルを生ずるデンドライト間液相流れを抑制し、フレックルの生成を無くす。図2 は丸インゴットの液相及びmushy zone内のフローパターンを示す。外面におい てフレックル発生。図3は磁場によりフローパターンが変化する様子を示す。フ レックルは生じない。(詳細は弊社ホームページを参照ください)

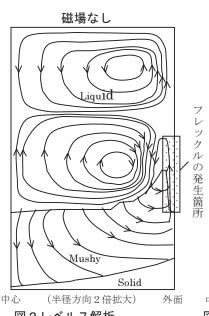


図2レベル7解析 CPROに関する計算例、セミナー

磁場あり Liquid Mushy Solid (半径方向2倍拡大)

図3レベル7+静磁場連成解析

Engineering & Basic Interdisciplinary Science 株式会社 エビス

〒252-0325 神奈川県相模原市南区新磯野 5-10-6 TEL 046-253-5593 FAX 046-253-5170

E-mail: yoshio@ebiscorp.jp URL: http://www.ebiscorp.jp/

ホームページをご覧下さい。 Mプロセスに関する詳細について は弊社へお問合せください

業界注目!! この機能で低廉価格(500万~)発売中!!

炭素/硫黄分析装置 CS-800

システム概要

CS-800はJIS燃焼一赤外線吸収法に準拠した炭素/硫黄分析装置です。鋼、鋳鉄、銅、 鉱石、セメント、セラミックスその他の材料中の炭素及び硫黄を高速同時定量します。

CS-800は最大で4機の独立した赤外線セルを備えることができ、それぞれが分析用例 に応じて最適な赤外線吸収長に設定されます。 16ビットマイクロプロセッサにより誘導 燃焼炉のパワー制御や赤外線セル検出器のゼロ及び感度調整を行います.

徴 特

- ソリッドステート赤外線セル 4 機搭載
- 燃焼炉の自動クリーニング機構
- 誘導炉出力制御
- 単独及び外部PC制御による運転
- 助燃剤なしでの最大20gまでのCu試料分析

固体発光分析装置 OBLF GmbH [GERMANY]

鉄・鋼・アルミニウム等の品質保証・工程管理分析(JSG 1253)等に最適.//

GS1000

500mmタイプの光学系を持つGS1000は、最大分析受光部数に制約があるほ かは、放電スタンド、データ処理部、発光電源部等はQSN/QSG750と完全 に共通です。目的が明確化されたルーチン分析に圧倒的な高精度と安全性お よびコストパフォーマンスを誇ります。

Dynamic Systems Inc.

グリーブル試験機シリーズ

熱・機械プロセスの物理シミュレーションのための業界基準となります.

高速加熱と広範囲の機械能力により、溶接HAZ シミュレーション、ゼロ強度、熱サイクル、熱処理研究、 低力試験、高温引張り試験、さらには高速圧縮・引張り試験、多衝撃高温変形試験、溶融および凝固、 そしてストリップ焼なましなどの試験に理想的です。

日本総代理店

ジャパン マシナリー 株式会社 JAPAN MACHINERY COMPANY

第三営業部 〒144-0046 東京都大田区東六郷 2-19-6 (JMCビル) TEL.03-3730-6061(代表) FAX.03-3730-3737

関西営業課 〒530-0002 大阪府大阪市北区曽根崎新地1-3-16(京富ビル) TEL.06-6342-1550 FAX.06-6342-1557