構造用金属材料の新たな挑戦 ・ロ構造制御に基づく新指導原理構築

鋼の変形挙動に関する材料科学と固体力学からの検討 ~高強度・高延性両立の指導原理の探求~

Investigation of Deformation Behavior of Pearlitic Steel by The Fusion of Material Sciences and Solid Mechanics – A Search for A Guiding Principle for A Coexistence of High Strength and High Ductility –

金沢大学 理工研究域機械工学系 准教授

特集記事 ● 2

ト川智嗣 Tomotsugu Shimokawa

北見工業大学 工学部機械システム工学科 教授

大橋鉄也 Tetsuya Ohashi

九州大学 大学院工学研究院 出中將已 材料工学部門 准教授 Masaki Tanaka 九州大学 大学院工学研究院 材料工学部門 教授

東田賢 Kenji Higashida

はじめに

平成22年度からスタートしたJST産学共創基礎基盤研究 プログラム「革新的構造用金属材料創製を目指したヘテロ構 造制御に基づく新指導原理の構築」に対して、著者らの提案 した「材料科学と固体力学の融合によるヘテロナノ構造金属 における高強度・高靭性両立の指導原理確立」を採択して頂 くことができました。とても刺激的な環境の中、現在研究活 動に励ませて頂いています。本稿では、著者らの提案した研 究テーマの概要と現在取り組んでいる研究内容について紹介 させて頂きます。

1.1 研究の背景

ナノスケールのヘテロな内部組織を有する構造用金属材 料(ヘテロナノ構造金属、hetero-nanostructured metal、と 呼ぶ)は、従来予測もできなかった突出して優れた力学的機 能の出現や、過去に不可能と断じられてきた一見相矛盾する 力学特性の同時発現の可能性を有しています。 例えば、 図1 で示すように結晶粒径を数100nmまで低下させた超微細粒 (UFG) 鉄鋼材料では、これまでの強度と靭性との間のトレー ドオフの関係を打ち破り、顕著な「高強度化」の一方で「低温 靭性」の著しい向上がもたらされています^{1,2)}。また硬質相と 軟質相が100nm以下の周期で積層した構造を持つ伸線加工 されたパーライト鋼は、「超高強度」と同時に、使用寿命100 年以上を要求される橋梁用鋼線としての「高信頼性|を確保 しています。このような優れた事例に対して、今後さらなる ブレークスルーを求めるには、従来の経験則の延長や個々に 分散・孤立した理論体系の単なる寄せ集めでは極めて不十分 であると考えられます。ここで、従来の理論体系の最大の問 題点は、転位密度等の組織パラメータを統計的に取り扱うこ

とのできる結晶学的空間スケール(相や結晶粒サイズ)が数 μm以上の構造材料を対象に、理論構築されているため、異 相界面や結晶粒界のナノレベルでの力学的役割がほとんど 全く無視されて来たことです。上記空間スケールが数100nm 以下に減少した場合、異相界面や粒界の占める原子数比は急 激に大きくなることから、材料組織空間に広がるこれら2次 元格子欠陥群の構造解析と合わせて、その力学特性に対する 役割を明確に記述できる理論・実験体系の確立は必須である と理解できます。例えば、単純な引張応力条件下でのバルク 単体セメンタイトは極めて脆性的ですが、前述のパーライト 構造に見られるように、フェライトとの多層膜化による複合 組織システムの中では、高強度であると同時に明確な延性を 示します³⁾。その材料科学的・力学的発現機構は何でしょう か? 結晶粒微細化による低温靭性向上の理解には、結晶粒 界の精緻なキャラクタリゼーションと併せてそれに根ざした 階層的固体力学理論体系の構築が必要不可欠です。

1.2 研究の目的

そこで本研究では、ヘテロナノ構造金属における高強度・ 高信頼性両立という優れた力学特性発現の指導原理を導出・ 確立することを目途し、ヘテロナノ構造中で形成発展した結 晶格子欠陥群について、その構造と力学場の解析を、連続体 から原子レベルにわたる階層的実験観察・理論解析・計算機 シミュレーションを駆使して行います。特にヘテロ構造を構 成する界面や、その中に生じた亀裂といった弾性的特異性か ら発した不均質な応力場や弾性・塑性ひずみを精緻に計測す るとともに、それらの再分配が異相界面や粒界を跨いで隣接 空間内の塑性現象にどのように影響を与えているかについて 理論的な検討を試みます。具体的には、パーライトに代表さ れるナノ層状構造に対して、その高強度を保証する応力分配 過程とその機構^{3,4}、一方でその延性を生み出す軟質相と硬質 相の相互作用に関する材料科学的、力学的解析を階層的に行 います。また、UFG材に代表される高密度格子欠陥材料を取 り上げ、高靭性化の指導原理を探求していきます。すなわち 亀裂先端近傍から発生した塑性域が微細粒を跨いで発達する 過程で、如何に亀裂先端の応力特異性を遮蔽・軽減するかに ついて、新たな考えを提案し理論・実験両面から検証してい きます。

1.3 研究組織

上記の視点に基づいたヘテロナノ構造金属の新たな展開に は、結晶格子欠陥論に基盤を置く材料科学者とマルチスケー ル固体力学の専門家が真に融合した新たな学問展開が必須で あることは容易に理解できます。当研究では、図2に示すよ うに強い相互理解と信頼を有する両分野の研究者が結束し、 ヘテロ構造金属の有する新たな可能性を徹底して追求し、構 造材料産業界にブレークスルーを生み出す新たな材料開発・

図1 ヘテロナノ構造金属の優れた力学特性

設計の指導原理を提示することを最終の目標としています。

2パーライト鋼のヘテロな階層組織

ここから著者らが現在取り組んでいる研究内容について簡 単に紹介させて頂きます。

パーライト鋼は硬質であるセメンタイトと軟質であるフェ ライトの積層組織であり、優れた力学特性を示すことが多く 報告されています。例えば、他の炭素鋼よりも強度と延性の バランスが優れていることや、効率の良い伸線加工硬化能力 を有していることです⁵⁾。なぜこのような優れた力学特性を 示すことが可能なのでしょうか? パーライト鋼は以下に述 べるようにヘテロな階層組織を有しており、その変形挙動は 未だに完全に理解されていません。そこで、本研究グループ ではパーライト鋼の優れた力学特性とその内部組織の関係を 検討しながら、高強度・高延性両立の指導原理の探求を行っ ています。

図3に示すようにパーライト鋼は、硬質層であるセメンタ イトと軟質層であるフェライトの積層構造であり、その積層 構造の単位は「コロニー」と呼ばれ、積層の配向が異なって も同じ結晶方位を持つコロニーの集団は「ブロック」と呼ば れています。つまり、パーライト鋼は以下に示す3つのヘテ ロな階層組織を有するヘテロ構造金属であることが理解でき ます。

2.1 マクロ組織(コロニー、ブロック)

まず、コロニーの集団やブロックの集団のマクロ組織があ り、特徴的な長さとしてコロニー、ブロック径dが考えられ ます。つまり、コロニー、ブロック単位の変形について、ラメ ラー構造の方向に注目して調査する必要があると考えていま す。また、コロニー集団とブロック単位の変形機構を調査し、

図2 研究組織の概略図

図3 パーライト鋼のヘテロな階層組織

セメンタイトの塑性変形の寄与について検討を加えていく必 要があります。

2.2 メゾ組織 (ラメラー構造)

つぎに、積層構造の集合としてコロニーのメゾ組織があ り、ここでの特徴的な長さとして積層間隔hが考えられます。 伸線加工ひずみが増加するほど、ラメラー構造は伸線方向に 配向します。そのため、セメンタイトとフェライトの積層構 造体の弾塑性変形挙動を把握する必要があります。ここで注 目しているのは、格子欠陥の発展に基づく応力分配機構であ り、セメンタイトがメゾ組織において実際にどのような力学 状態になっているかを検討していくことが重要だと考えてい ます。これに関連して、セメンタイトがパーライトに挟まれ ることにより、セメンタイト単体とは異なる力学環境になる ことが推測でき、複合組織の力学の観点からセメンタイトの 塑性変形能力を検討する必要があると考えています。

2.3 ミクロ組織(フェライト/セメンタイト異相界面)

最後に、フェライト・セメンタイト異相界面のミクロ組織 があり、ここでの特徴的な物理量としてミスフィットひずみ ∂が考えられます。先にも述べたように同一ブロック内は同 じ結晶方位を持っていますが、コロニー単位の異相界面は異 なる方向を向いているので、それぞれの界面構造、またミス フィットひずみが異なることが考えられます。また、伸線加工 に伴いセメンタイトは分解することが報告されており、異相 界面近傍の炭素濃度が平衡状態から変化しています。つまり、 伸線加工材の異相界面の構造は、パテンティング材と異なっ ており、その役割がどのように伸線パーライト鋼の力学特性 に関係しているのかを検討する必要があると考えています。

ここから、各階層組織に注目して行っている研究の取り組 みについて紹介させて頂きます。

3 微細マーカー法による パーライト鋼の局所ひずみ解析

パーライト組織は朝性の高いフェライト中に朝性の低 く硬いセメンタイトが半秩序的に配向して分配している 組織です。パーライト鋼に伸線加工を施す事で引張強さが 5000MPaにも達するスチールコードが開発されています が⁶⁾、パーライト組織の下部組織であるブロック、コロニー の変形挙動とパーライト鋼のマクロな変形挙動の関係はま だ明らかではありません。そこでここでは、電子線リソグラ フィ技術を活用した微細マーカー法により伸線加工前のパー ライト鋼の引張変形に伴う局所ひずみ分布を定量的に評価 し、コロニーやブロック単位で変形はどのように表現できる のかについて検討しています。

3.1 実験方法

SWRS92A (C: 0.92%) の5.5mm ∮ 熱間圧延線材より引張 試験片を作製し、その表面を所定の手順で平滑化した後、図4 に示すように電子線リソグラフィを用いて試験片表面に格子 状 (線幅約70nm、500nm間隔)の微細マーカーを付与します。 この試験片について引張試験片前後でマーカーを観察し、そ の位置変位から各所の相当塑性ひずみを算出することが可能 です。なお、ここでは50 μm×100 μm (100×200 格子)の広範 囲における相当塑性ひずみ分布が測定可能です。さらに、通 常マーカーを塗布するためには表面の高精度の平滑性が必要 となり、セメンタイトを認識するために行う必要がある表面 エッチングができませんが、図4からわかるようにAsB像を 用いることでマーカー内部にフェライトとセメンタイトのラ メラー構造が確認できます。これによりラメラーの配向とそ の領域の塑性変形を関連付けることが可能となっています。

3.2 実験結果および考察

図5に、微細マーカーを付与した後5%引張変形させた試験 片のSEM 像と同一領域の相当塑性ひずみ分布を示します。 パーライト組織は単一組織でありながらも二相綱にみられる ような不均一な変形挙動を示していることが確認できます。 また変形が集中している領域を詳細に追跡したところ、ブ ロック、コロニー単位の変形においては、ラメラーの配向が強 く影響することを確認しています。つまりラメラーの配向と ブロック間の相互作用が局所の塑性ひずみ量に強く影響する ことが理解できます。その結果、パーライト組織中には不均質 な塑性ひずみ分布が現れることが考えられます。更に図5左 で示すようにセメンタイトのラメラー方向が互いに異なるブ ロック境界において大きな塑性変形が確認でき、実験で報告 されているようにブロック径は延性に影響する可能性がある ことが確認できます"。このように、局所ひずみ解析によって ひずみを定量評価することで、パーライト鋼の変形がセメン タイトのラメラー方向に強く依存することが理解できます。

パーライト鋼に伸線加工を施すとラメラー構造は伸線方向 に配向し、強度は効率的に増加していきます。伸線加工まま 材は高い強度を示しますが、ラメラー間隔が変化しない程度 に焼き鈍したパーライト鋼では強度がやや低下しつつも、均 一伸びが向上することが報告されています³。つまり、伸線 加工材のラメラー構造が伸線方向に完全に配向していると考 え、ひずみ一定の条件が成り立つと仮定すると、伸線パーラ イト鋼が均一伸びを示すためには単体では延性を示さないセ メンタイトも塑性変形を行う必要があります。

そこで、ここでは有限要素法を用いて、脆いが強い材料の セメンタイトと弱いがねばい材料のフェライトの2相材料の 大変形弾塑性解析を行い、なぜ脆いセメンタイトがフェライ トに挟まれることで大きな変形を担えるのかについて検討を しています。

4.1 数値モデル

図6に示すようにセメンタイト相のヤング率、ポアソン比、 降伏応力は実験結果¹⁻³⁾に基づきそれぞれ181GPa、0.3、およ び2.75GPaとしています。また加工硬化率は0としています。 負荷応力が降伏応力に達したときの弾性ひずみは約1.519%と なります。一方で、フェライト相の応力ひずみ関係はSwiftの式

500nm

図4 パーライト鋼に絵画した微細マーカーとSEM-AsB (Angle selective Backscattered) 像

図5 ブロック境界と相当塑性ひずみの関係

 $\sigma = a \ (b + \varepsilon^{(p)})^n$

で表現します⁸⁻¹⁰⁾。ここでa、b、nは定数、 σ と $\varepsilon^{(p)}$ はそれぞれ 応力と塑性ひずみです。フェライト相のヤング率とポアソン 比を実験データ⁸⁻¹⁰⁾を参考にしてそれぞれ200GPaおよび0.3 としています。これらのデータから応力と全ひずみ (弾性成分 と塑性成分の和)の関係を求め、それを解析に用いています。

4.2 解析結果と考察

図7は公称ひずみが1.7%のときの、セメンタイト相単相の 試料とセメンタイト相をフェライト相材料で挟んだ3層構造 になった試料の中央部の垂直塑性ひずみ成分の分布を示して います。図7の状態以前の公称ひずみが1.51%の段階ではセ メンタイト相単相の試料ではくぼみのある試料中央部(試料 の1/4を解析対象としているため、図7では試料の左端がそれ にあたる)でせん断帯が形成されることを確認しています。一 方で、フェライトに挟まれたセメンタイトはこの段階ではま だ降伏していないことを確認しており、このことはフェライ トでセメンタイトが挟まれることによりセメンタイトの塑性

図6 フェライトとセメンタイトの数値モデル

37 セメンダイト単層とフェライト/ セメンダイト役相モデル中の 局所塑性変形 変形の開始が遅れることを意味しています。さらに変形が大 きくなり図7に示す公称ひずみが1.7%のとき、セメンタイト はフェライトの層で挟まれることにより、セメンタイト相で のせん断帯形成が若干抑制されていることが確認できます。

このように、単体のセメンタイトよりもフェライトで挟ま れたセメンタイトは、局所変形の開始が遅れることが理解で きます。さらにはラメラー間隔の減少に伴うサイズ効果によ りフェライトとセメンタイトの力学特性は変化する可能性が あり、ラメラー組織を構成する各相の力学特性の関係により 積層構造体の強度と延性の関係は変化するので^{11,12)}、その影 響についても現在検討を進めています。

5 原子シミュレーションによる 微細積層構造中の異相界面の役割

伸線加工によるセメンタイトの幅は、数nmから数10nm まで細くなります¹³⁾。このとき、伸線パーライト鋼が大きな 延性を得るためには、上述したようにセメンタイトの塑性変 形が必要であると考えられます。そのとき、セメンタイトの 塑性変形の起点はどこになるでしょうか? また、伸線加工 したパーライト鋼はセメンタイトが分解し^{14,15)}、異相界面近 傍の炭素濃度が平衡状態とは異なっていることが報告されて おり、異相界面の役割がパティング材に比べて変化している 可能性があります。つまり、パーライト鋼の強度と延性を両 立するためには、セメンタイトとフェライトの異相界面はど のような役割をするべきでしょうか?

このことを検討するために、延性特性と脆性特性を示す仮 想材料を2次元三角形格子モデルで単純に表現し、それらを 積層化することで延性脆性積層構造体がどのような変形・力 学挙動を示すかを検討しています。このとき、原子間ポテン シャルを制御することで異相界面の結合力を変化させ異相界 面の役割について考えています。

5.1 仮想材料の設計

延性もしくは脆性特性を示す仮想材料を表現するために、 Morseポテンシャルにカットオフ距離たを導入したshiftedforce Morseポテンシャルを採用しています。このポテン シャルの関数形状を変更することにより、延性もしくは脆性 特性を示す仮想材料を設計します。

材料が延性的な特性を示すか、脆性的な特性を示すかは、 大まかに無次元量μ*b*/γ_sで整理することが可能であること が報告されています¹⁶⁾。ここで、μは剛性率、bはバーガース ベクトル、γ_sは表面エネルギーです。この無次元量がおよそ 10よりも大きいと脆性的であり、逆に小さいと延性的な特性 を示すことが報告されています。今回設計した延性モデルが $\mu b/\gamma_s = 6.5$ であり、脆性モデルが $\mu b/\gamma_s = 17.7$ となって います。図8に、この2つの単層モデルの単軸引張シミュレー ションを行った応力ひずみ曲線と $\epsilon = 0.1$ のときのせん断応 力分布図を示します。両者には、初期欠陥(原子3つを取り 除いた微小亀裂)を導入しています。脆性モデルは延性モデ ルよりも強いことが確認できますが、ピーク応力時に初期欠 陥である微小亀裂が進展し、脆性破壊をしていることが理解 できます。これに対して、延性モデルでは、構造緩和過程に おいて初期欠陥が転位対になり、これらの転位が運動するこ とで塑性変形が進行し、延性的な特性を示していることが理 解できます。

これらの延性モデルと脆性モデルを積層化し、さらに、そ の異相界面の結合力を変化させることで、積層構造体の変形 挙動と異相界面の関係について検討しています。ここで、通 常、異相界面は異種原子により構成されます。そして、異種 原子同士の相互作用は、各原子の原子間ポテンシャルのパラ メータの合計値を1(界面結合力:強い)、2(通常)、5(弱い) で除すことにより、界面結合力の制御を行います。

5.2 解析結果と考察

図9に延性モデル(α)と脆性モデル(θ)を積層化したモ デルの応力ひずみ曲線を示します。単層モデルと同様に、延 性層と脆性層に対して、ともに初期欠陥を導入しています。

界面結合力が弱い、もしくは通常の場合、脆性単層モデル と同様に、脆性層中の初期亀裂が転位を放出しながら進展す ることになり、結果的に延性を稼ぐことが困難であることが 確認できます。このとき、異相界面から脆性層内にほとんど 転位を放出していません。それに対して、異相界面の結合力 が強い場合、脆性層中の初期亀裂が進展していないことが確 認でき、大きな伸びを獲得していることが確認できます。こ れは、異相界面から転位を早期に放出し、脆性層中の初期亀 裂が進展する前に弾性ひずみエネルギーを解放するためだと 考えることができます。

このように、異相界面の結合力を変化させることで、異相 界面の転位源としての能力(もしくは転位が異相界面を通過 するときの抵抗力)が変化し、結果的に積層構造体の強度と 延性の関係に強く影響を与えていることが確認できます。今 後、さらに詳細な異相界面領域の原子構造を解析していくこ とで、異相界面の役割を検討していきます。

6 おわりに

本稿では、パーライト鋼のヘテロな階層組織とその優れた 力学特性の関係を、材料科学と固体力学を融合することによ り検討し、それを通じて高強度・高延性両立の指導原理の探 求を行っている現状を紹介させて頂きました。今後も本プロ ジェクトの特徴である産業界との連携を密に行い、構造材料 産業界にブレークスルーを生み出す新たな材料開発・設計の 指導原理を提示できるように研究グループが一丸となり精進 していきます。

謝 辞

本研究を実施するにあたり、九州大学 土山聡宏先生、中田 信生先生、新日本製鐵 樽井敏三博士、茨城大学 友田陽先生、 東京大学 小関敏彦先生、井上純哉先生、小島真由美先生に多 くの有益なご指導を頂きました。ここに感謝の意を表させて 頂きます。

図8 脆性、延性単層モデルの引張変形解析

参考文献

- 1) N.Tsuji, S.Okuno, Y.Koizumi and Y.Minamino : Mater. Trans., 45 (2004) , 2272.
- 2) M.Tanaka, K.Higashida, T.Shimokawa and T.Morikawa : Mater. Trans., 50 (2009), 56.
- 3) Y.Tomota, P.Lukas, D.Neov, S.Harjo and Y.R.Abe : Acta Mater., 51 (2003), 805.
- 4) 定松直, 東田賢二: 鉄と鋼, 98 (2012) 6, 328.
- 5) 樗井敏三:東京工業大学学位論文,(2010)
- 6) T.Takahashi, I.Ochiai, H.Tashiro, S.Ohashi, S.Nishida and T.Tarui : Nippon Steel Tech. Rep., 64 (1995), 45.
- 7)高橋稔彦,南雲道彦,浅野厳之:日本金属学会誌,42 (1978),708.
- 8) 梅本実, 土谷浩一: 鉄と鋼, 88 (2002), 117.
- 9)梅本実:日本鉄鋼協会加工硬化特性と組織研究会配布資料,熊本,(2010年11月)
- 10) 梅本実:ふぇらむ,9(2004),151.
- J.Inoue, S.Nambu, Y.Ishimoto and T.Koseki : Scripta Mater., 59 (2008) , 1055.
- S.Nambu, M.Michiuchi, J.Inoue and T.Koseki : Compos. Sci. Technol., 69 (2009) , 1936.
- 13) X.Zhang, A.Godfrey, N.Hansen, X.Huang, W.Liu and Q.Liu : Mater. Charact., 61 (2010), 65.
- 14) K.Hono, M.Murayama, M.Nishida and S.Yoshie : Scripta Mater., 44 (2001), 977.
- J.Takahashi, T.Tarui and K.Kawakami : Ultramicroscopy, 109 (2009), 193.
- 16) I.-H.Lin : J. Mater. Sci. Lett., 2 (1983) , 295.

(2012年8月13日受付)

図9 延性脆性積層構造体の変形特性と異相界面の関係