三菱空気潤滑システムの開発と実船試験による検証

Development of Mitsubishi Air Lubrication System and Verification of Its Effect by Means of Sea Trial

> 川北千春 Chiharu Kawakita

三菱重工業 (株) 技術統括本部 長崎研究所 主席研究員

し はじめに

原油等の原材料価格の高騰や、国際海運におけるCO₂排出 規制などの環境問題への対応策として、海運業界からの省エ ネ船開発への期待は大きい。船体周りの流れにミリオーダの 気泡を混入し摩擦抵抗を低減する空気潤滑法は、数ある省エ ネ技術の中でも、とりわけ大きな省エネ効果が期待されるこ とから注目されている。

連携記事

空気潤滑法は船底に空気を送り込み船体と海水の間に気泡 の層を作ることで船体の摩擦抵抗を減少させる技術である。 特に、タンカーやバルクキャリアなどの大型低速肥大船は、 全抵抗に対する摩擦抵抗の割合が大きくなり、この摩擦抵抗 低減の有効な対策として空気潤滑法は以前より注目されて いた。図1に空気潤滑法のイメージを示す。船底に設けられ た空気吹出部から空気を送り込み、周囲の流れによって引き ちぎられ、気放流となって船底部を覆いながら船尾方向に流 れる。これまで空気潤滑法の実船試験は数例実施されている が、特に児玉¹⁾らが実施したセメント運搬船を用いた実船実 験において約5%の省エネ効果が報告され空気潤滑法の実船 における有効性に関心が集まっている。

三菱重工業(株)では2010年4月に新造船としては世界 初となる空気潤滑法を応用した空気潤滑システム(MALS: Mitsubishi Air Lubrication System)を搭載した図2に示す日 の出郵船(株)向けモジュール運搬船「邪馬台」を竣工し、海 上試運転時の実船実験により10%以上の省エネ効果が得られ る事を示した^{2,5)}。更に2010年12月に竣工した同システムを 搭載した姉妹船「大和」では、海上試運転にて省エネ効果を 確認すると共に、水中曳航体を用いた船底気泡流観察、およ び船底に設置したせん断力計による局所摩擦力計測を実施し た³⁾。

本稿では、MALSを開発する上で模型試験など種々の検討 を行った結果と実船試験の結果およびCFD(数値流体力学; Computational Fluid Dynamics)を用いた空気潤滑システム による摩擦抵抗低減効果の予測手法について報告する。

図1 空気潤滑法のイメージ

図2 モジュール運搬船「邪馬台」

そックアップによる 水中空気吹出し試験

2.1 モックアップ

空気潤滑システムの配管系統図を図3示す。ブロアーから 供給される空気は、一旦ヘッダータンクに貯められ、そこか ら空気を供給する配管を15本の枝管に分岐させ、船底部に 設けた空気供給部に導管している。1本の空気供給管にそれ ぞれ一つのチャンバー(空気室)が接続され、そのチャンバー 全体がリセスの中に納められている構成となっている。チャ ンバーには空気を放出する16個の小孔が設けられている。 このリセスとチャンバーの実機サイズの模型を製作し、実際 に空気を吹出して空気の放出状況を確認した⁴。

2.2 計測結果

2.2.1 空気中流速分布確認試験

チャンバーへ取り付けた空気供給配管は1本であるので、 チャンバーに設けた各小孔から送り出される空気流量に偏り が生じる。そこで、チャンバー内に邪魔板を設置して空気の 流れの均一化を行った。空気中における邪魔板有無しの状態

図4 チャンバーの小孔から吹出される流速分布の比較図

で流速分布を計測した結果を図4に示す。邪魔板が無い場合 は、空気供給配管直後の小孔の流速にピークが生じており、 この位置から殆どの空気が吹出されてしまい、流速分布は均 等化されていない。邪魔板がある場合は、チャンバーの各小 孔の流れが均等化されている様子が伺えることから、ここで 採用した邪魔板はチャンバー内の流速分布の均等化に有効で あることが分かった。

2.2.2 水中空気吹出し状況確認試験

水槽に模型を設置し、底面の各小孔から空気が吹出す状況 を水中カメラで確認した。実験の状況を図5に示す。

チャンバーの横方向が水平の状態において空気を吹出した 時の小孔の状況を水中カメラで撮影した写真を図6に示す。 この時、完全に水平状態であると水中に放出した空気が模型 底面に滞留するため、縦方向に10度傾斜させて空気を模型 底面から逃がしている。これより、チャンバーが横方向に対

図5 空気の放出状況(水中)

0 12 10 1.

図6 小孔からの空気吹出状況写真(水平状態)

して水平状態にあるとき、16個の小孔全てから均等に空気が 放出されている様子が伺える。

次にチャンバーを横方向に3度傾斜させた時の空気の放出 状況を図7に示す。横方向に喫水の差が生じた場合、16個の 小孔の内、喫水が浅い方から5~6個の孔からしか空気が放 出されていない。これより、小孔からの空気吹出しは、船底 の静水圧の違いからくるチャンバー内の横方向の圧力分布に 大きな影響をうけることが分かった。

実船の航海時は常時横傾斜したまま航海することはなく、 さらに波浪による横揺れが生じた場合でも、船は水平状態と 傾斜状態を繰り返すことから、船底が空気に覆われない状態 が長く続くことはないと考えた。

岸壁係留時の 実船空気吹出し実験

3.1 岸壁試験概要

岸壁に船を係船した状態で、ブロアーを作動させ船底に空 気を送り込み、船底の小孔からの空気の放出状況をダイバー によるカメラ観察で確認した。また、15本に分岐した配管そ れぞれに空気が流れていることを確認した。

3.2 試験状態

岸壁試験は、喫水が3.75m、4.35mの2状態、横傾斜が0度 (傾斜なし)、1.8度(右舷)の状態で実施した。

3.3 試験結果

3.3.1 バルブ開度の調整

バルブ開度と各チャンバーに流れる空気の流量について確 認した。図8はバルブの開度を変更したときの各配管の推定

9~12

図7 小孔からの空気吹出状況写真(傾斜状態)

13~16

流量を示している。本船は分岐後のバタフライ弁背後とチャ ンバー間に流量計を取り付けていないため、代わりに計測し た圧力から流量を推定している。ここで、バルブ開度はバル ブ開度1からバルブ開度5に変更するにしたがって、バルブ が閉められた状態になっている。

バルブ全開からバルブ開度3までは配管毎の流量にバラツ キが残っているが、バルブを閉めていくと流量が均一化され ている。したがって、バルブを適当に絞って弁に圧損を与え てやれば、各配管に均一に空気が流れることが分かった。

次に図9に各バルブ開度におけるブロアーインバータの消 費電力を示す。バルブ開度を増加させる場合と減少させる場 合において同一バルブ開度で消費電力が異なり、ヒステリシ スを生じている。

バルブ全開からバルブ開度3付近までは、ほぼ一定の消費 電力であるが、バルブを閉め圧損が大きくなるにしたがっ て、バルブ開度3を越えた付近から消費電力の増加量が大き くなっている。バルブ開度に調整においては、流量の均一度 とブロアーインバータの消費電力を勘案して適切なバルブ角 度を設定する必要がある。

図8 バルブ開度と流量の比較

図9 バルブ開度とブロアー消費電力の比較

3.3.2 傾斜時流量確認

船体が傾斜している時(右舷1.8度)の15本の配管の流量 を確認した。図10に2通りのバルブ開度に対する推定流量を 比較して示す。バルブの開度が小さいAの方は、喫水が大き いチャンバー番号12~15のチャンバーの流量が他のチャン バーに比べて小さくなっている。バルブ開度を大きくして弁 を絞ると、すべてのチャンバーでほぼ一定の流量となってい る。これより、船体が傾斜している場合も適当なバルブ開度 を与えることで、各チャンバーに流れ込む空気流量を一定に 保つことが可能であることが分かる。

4、海上実船試験

4.1 供試船の概要

実船試験に用いられたモジュール運搬船の概要を表1に記 す。本船の特徴は大きなB/dを有する幅広、浅喫水船型であ ることで、船底に広範囲なフラット部を有している。主機は 中速ディーゼル機関で2基2軸 (CPP)の推進方式である。

空気で船底を覆うために船底に3箇所の空気吹出部を設 け、補機室に設置した2台のブロアーで空気を供給している。

図10 バルブ開度と流量分布の比較

船長	Loa	162 m	
船幅	В	38 m	
深さ	D	9.0 m	
喫水	d	4.5 m / 6.37 m	
排水量	Δ	10,201 t / 19,818 t	
主機関 -		DAIHATSU 6DKM-36 × 2	
		Max.3,218 kW × 2	
プロペラ	-	CPP	
計画速力	U	13.25 knot	

表1 実船試験供試船の主要目

4.2 水中曳航体を用いた気泡流状況の確認

船底気泡流状況を確認するために、観測用の水中曳航体を 準備した。図11に観測用の水中曳航体を示す。本船の船首部 から曳航した水中曳航体は、稼動式の水平翼にて水深方向を 制御可能とした。また,船首部からの曳航索長を調整するこ とにより、船体長手方向の位置を調整可能とした。水中曳航 体の内部にはVTRカメラおよび光源を装備し船底状況を観 測可能とした。

図12に水中曳航体にて撮影した船速7.3ノット(kn)におけ る空気潤滑システム作動時の船底状況写真および曳航体の位 置を示す。各撮影点は中央吹出部から船尾側に65m離れた位

図11 船底気泡流観察用水中曳航体

図12 船底気泡流観察結果

置である。空気は各空気吹出孔から均一に放出された後、気 泡流となって船底を満遍なく覆い流れている様子を確認した。

4.3 省エネルギー効果の評価

空気を吹出さない通常の速力確認試験に引き続き、空気を 吹出した時の省エネ効果を確認するために、同様の方法で速 力確認試験を実施した。速力は風潮修正を施し、主機馬力は ラック値の読みから算出した。また、実船試験時にはトギノ 式軸馬力を仮設して軸馬力を同時に計測した。試験時のバル ブ開度は岸壁試験結果から判断して、ある一定の絞りを与え ている。

速力試験は空気の吹出量を3通り変更して実施した。空 供給量は(1)式で定義される相当空気厚さを3mm、5mm、 7mmとして算出した。

ここに、 t_a は船底での相当空気厚さ、 Q_a は空気供給量、 B_a は気泡が覆う幅、Uは航海速度である。

図13に速力試験結果を示す。これより、本船の航海速力に おいて、空気を吹出した時の馬力の低減量に対してブロアー

図13 速力試験結果

相当 空気厚さ	馬力低減量	ブロアー 消費電力	正味省エネ 効果
7mm	680 kW	211 kW	469 kW (12%)
5mm	530 kW	143 kW	387 kW (10%)
3mm	380 kW	72 kW	308 kW (8%)

の消費電力を差し引いた正味の省エネ効果を算出した。その 結果を表2にまとめる。試運転における速力と馬力の確認の 結果、空気を吹出した時は、馬力が下がって、船速が上がる 傾向が見受けられた。また、相当空気厚さの増加とともに省 エネ効果も向上し、7mmの相当空気厚さで12%、5mmの相 当空気厚さで10%、3mmの相当空気厚さで8%の正味省エネ 効果を得た。

4.4 せん断力計測

MALSにおける局所摩擦抵抗低減効果を定量的に確認す るために、実船用せん断力計を船底の3箇所(せん断力計①、 ②、③)に取り付けて計測した。図12にせん断力の取付位置 を示す。せん断力計は船底に平行な検出面と、検出面を平行 に保持するための板ばねと、防水型ロードセルから構成され る1分力計である。

5.1 気泡流モデルおよび摩擦抵抗低減モデルの概要

MALSを各種船種に適用するためにはCFDを用いた摩擦 抵抗低減効果の予測が重要となる。弊社では気泡流モデルを 用いた船体周りを流れる気泡流の予測および気泡流による摩 擦抵抗低減効果の予測手法を開発している。本章では、実船 計測結果とCFDによる計算結果を比較することにより、予 測手法の有効性を示す。

気泡流モデルの支配方程式は、混合相の連続の式、混合相 の運動量方程式、気泡のボイド率の保存式及び気泡の並進運 動方程式である。また、気泡流による摩擦抵抗低減モデルは、 粗面に対する壁関数を応用したモデルであり、粗面では滑面 に対し摩擦抵抗が増加するモデルに対し、空気潤滑法では低 減するモデルとしている³⁾。

5.2 計算結果

5.2.1 対象船型およびメッシュ

計算対象船型は、実船試験を実施したモジュール運搬船と した。計算メッシュは最小格子間隔を20mmとし、片舷で約 110万とした。計算は実船スケールで実施した。

5.2.2 計算条件

実船試験にて計測データを有する船速Vsが14.9kn、相当 空気厚さta=3mm、5mm、7mmの計算を実施した。MALS が作動していない通常状態の局所摩擦抵抗係数をcf0、全摩 擦抵抗係数をCF0、MALS作動時の局所摩擦抵抗係数をcf、 全摩擦抵抗係数をCFとする。

図14 局所摩擦抵抗の計算と実船計測結果の比較(せん断力計②)

5.2.3 計算結果

4.4節に記載のせん断力計②における局所摩擦抵抗低減効 果(cf/cf0)の計算と実験の比較を図14に示す。相当気膜厚さ taが増加するほど局所摩擦抵抗低減効果が増加する傾向は計 算で評価できている。また、定量的にもほぼ一致した結果が得 られている。全摩擦抵抗の抵抗低減効果(CF/CF0)の計算結 果を比較して図15に示す。この低減量で推定したMALSの省 エネ効果はほぼ実船試験で得られた省エネ効果に相当してい る。MALS作動時および非作動時の船底でのせん断力分布の 計算結果を図16に示す。気泡は船底の広範囲を覆い、その部 分のせん断力が低下していることが分かる。摩擦抵抗低減効 果および局所摩擦力との比較検証により、本手法の計算精度 はMALS搭載船の設計に十分使用可能であることが分かる。

6 おわりに

大型浅喫水二軸船に三菱空気潤滑システム (MALS) を適 用するに当たり、事前にモックアップ試験や岸壁試験による

図16 船底におけるせん断力分布の計算結果

空気吹出し状況の確認を実施し、実船の海上運転において最 大で12%の正味省エネ効果を確認することができた。今後、 実海域における継続的な装置の検証、データ計測、省エネ効 果向上のための調整・改良を行っていく予定である。また、 CFDを用いたMALSによる摩擦抵抗低減効果の予測手法に ついても実船データをフィードバックしながら、精度向上を 行っていく予定である。

今後、MALSを更に高度化・高機能化するとともに、各種 船種に適用拡大を図ることにより、地球環境にやさしい船舶 の普及を進めていく。

参考文献

- 児玉良明,日夏宗彦,他:大型セメント運搬船を用いた 空気潤滑法による省エネ実船実験(結果と解析),日本船 舶海洋工学会講演会論文集,(2008)6.
- 2)溝上宗二,川北千春,他:空気潤滑システムの開発と実 船試験による検証,日本船舶海洋工学会論文集,(2010) 12,69-77.
- 3)川北千春:空気潤滑法による摩擦抵抗低減効果の推定, 日本船舶海洋工学会講演会論文集,(2012)14.
- 4)川北千春,高野真一,小段洋一郎,溝上宗二:空気潤滑シ ステム搭載船の実船船底気泡流と摩擦抵抗低減効果,日 本船舶海洋工学会講演会論文集,(2011)12.
- 5) 溝上宗二, 川北千春, 他:空気潤滑システムの模型試験 による検討及び実船試験による効果確認, 三菱重工技報, 47 (2010) 3.

(2012年12月4日受付)