

Machiko Ode

製鉄プロセスだけでなく材料の利用現場においても凝固に 対する理解を得ることは有益である。それは、1)凝固中に生 成した引け巣やボイド、割れや偏析などの欠陥をその後の処 理で取り除くことが不可能/困難であること、2)鋳造が複 雑形状を持つ金属部品の大量生産に適したプロセスである こと、3)溶接やろう付け、はんだ付けなどの接合技術に金属 の凝固が利用されていることなどの理由からである。「鉄の 凝固入門」シリーズでは凝固現象の基礎数理を4回に分けて 紹介した後、凝固過程の観察・解析技術、計算機シュミレー ション、連続鋳造を含む各種鋳造法、溶接技術まで解説を予 定している。本稿では「凝固現象の基礎数理」として熱力学 を、特にギブスの自由エネルギーをキーワードとして、平衡 状態図や核生成現象などについて紹介する。

(2) ギブスの自由エネルギー

エンジンなどの熱機関の発明によって、人々は熱と仕事が 互換であることに気が付いた。

そして、エネルギーは形を変えながらも総量が保存される という「熱力学第一法則:エネルギー保存の法則」を見出す ことになる。しかし、ほぼ同時に仕事として取り出せるエネ ルギーに制限があることに気付く。一旦熱エネルギーに変換 されてしまった他のエネルギーを元の状態に戻すためには、 外界から何らかの新たなエネルギーが必要になる。この制約 は「熱力学第二法則:エントロピー増大の法則」と呼ばれ、 ヘルムホルツはこの「自由に」取り出し可能な仕事量(エネ ルギー)を定義するために自由エネルギーFを提案した。

F = U - TS (1)

ここでUは内部エネルギー、Tは温度、Sはエントロピーで ある。第二項が仕事として使うことができない熱エネルギー 分である。ヘルムホルツの自由エネルギーは等温等積を前提 としているが、ギブスは等温等圧条件で利用可能なエネル ギー分を定義するため、自由エネルギー Gを下記の通り導入 した¹⁾。

$$G = U + PV - TS = H - TS$$
(2)

ここで、*H*はエンタルピーであり体積変化による系のエネ ルギー変化に対応する。ギブスの自由エネルギーを用いる と、熱力学第2法則は「系の自発的変化は変化による自由エ ネルギー変化が負(Δ*G*<0)の時に起こる」と言い換えるこ とができる。つまり、ギブスによって系の平衡状態ではΔ*G* =0となる、という基準が与えられた。

3、平衡状態図

平衡状態図は合金の組成、温度と圧力(通常は1気圧)を 決めた時、その合金が平衡状態で含む相とその組成、比率を 示してくれる。凝固現象の多くは固液界面エネルギー寄与が 無視できないこと、また連続冷却条件下でプロセスが進むな ど、状態図の"守備範囲外"も多い。しかし、状態図は凝固現 象の理解を助ける貴重な"道しるべ"であり、材料設計の基 礎資料としての価値は十分に高い。

平衡状態図は、所定の合金を必要十分な時間等温熱処理す ることで得られた平衡相の組成と存在比を測定することのほ か、熱分析や拡散対等から得られた情報より実験的に作成で きる。一方、構成相のギブスの自由エネルギー関数が得られ ていれば、それを基に計算で作図することも可能である。次 節でギブスの自由エネルギー関数から平衡状態図を描画する 方法について述べる。

3.1 ギブスの自由エネルギーと平衡状態図

ギブスの自由エネルギー(以下、自由エネルギー)から状態 図を作成する方法について説明する。図1に2元系合金の温 度T₁におけるのα固相と液相の組成-自由エネルギー曲線 を示す。合金濃度をc⁰とし、系が液相状態である場合の自由 エネルギー G^L (c⁰) と固相状態である場合のエネルギー G^a (c^{0}) の関係を考える。図より $G^{a}(c^{0}) - G^{L}(c^{0}) < 0$ となり、 固相状態の方が液相状態よりエネルギー的に安定となる。し かし、系が図1中に示される濃度c^e_eとc^lの固液二相共存状態 である場合、系の全自由エネルギー値は $f_e^{\alpha} \cdot G(c_e^{\alpha}) + f_e^{L} \cdot G$ (c_{e}^{L}) ($f_{e}^{\alpha} \geq f_{e}^{L}$ は相の存在比) となり G^{α} (c^{0}) よりさらに小さ くなる。図から明らかなように、2つの自由エネルギー関数 に共通接線が引ける場合、その接点間の濃度を平均組成とす る系は、濃度c_eとc_eの2相共存状態で自由エネルギーが最小 -平衡状態-になる。このように自由エネルギー関数の共通 接線を探し、接点濃度を温度毎にプロットしていくと平衡状 態図が作成できる。ここで平衡状態の相の比率f &とf &は、溶 質保存 $c^0 = c_e^{\alpha} f_e^{\alpha} + c_e^L f_e^L$ の条件と、 $f_e^{\alpha} + f_e^L = 1$ から

となる。この相比の関係を"てこの原理"と呼ぶ。このように 自由エネルギー関数が与えられると状態図を書くことがで き、得られた状態図から所定の温度での平衡相とその平衡濃 度、存在比を求めることができる。3相平衡も同様の原理で、

3元系の場合には共通接線ではなく共通接平面を考えるこ とで2元系同様に扱うことができる。しかし殆どの鉄鋼材料 は4成分以上の多元系合金であり、自由エネルギー関数が分 かっていても状態図を描画することは簡単にはできない。さ らに2元、3元系状態図から読み取れる情報から実用材料の 平衡情報を得ることは難しく、計算状態図の利用が不可欠と なる。

3.2 計算状態図の基礎

自由エネルギー最小条件をコンピューターで計算し、平衡 状態図を描画するものがCALPHAD (CALculation of PHAse Diagrams) ソフトウェアである。多成分合金の場合には状態 図集で希望する状態図が見つかるとは限らない。一方、鉄基 合金のCALPHADデータベースでは20以上の添加元素が考 慮されており、その範疇であれば任意の擬二元系状態図、擬 三元系等温断面図を作成することができる。CALPHADソ フトの草分け的存在と言えば、Thermo-Calcであろう²⁾。初 期のThermo-Calcのインターフェースはテキストベースの 対話形式で、初期入力値として状態図の軸の他に計算開始 点(状態図中の自由度0となる変数一式)が要求されてい た。筆者の経験では計算開始点を単相安定領域から選ぶと、 Thermo-Calcの計算が失敗することがある。これは、単相安 定領域であるにも関わらず平衡する相の組み合わせ(相境界 線)の探索を開始させるためである。その結果、状態図の計

図1 固溶体合金相における自由エネルギーと平衡状態図の関係

図2 包晶温度での各相の自由エネルギーの関係

算の初期入力値として適切な条件選択を行うため実験状態図 が必要になる、というジレンマが発生し多くの計算状態図入 門者が挫折することになる。しかし、CALPHADソフトウェ アはヴァージョンアップを繰り返して洗練されてきており 現在は初期値に計算開始点が陽に必要とされていない。また GUI版の開発、Thermo-Calc以外にも機能を絞った廉価なソ フトウェアが発売されるなど³、計算状態図入門者に"やさ しい"状況となっている。

また、CALPHADソフトウェアには状態図描画だけでな く、自由エネルギーを評価 (アセスメント) するモジュール が組み込まれているものある。アセスメントでは、まず自由 エネルギーが再現すべき条件の収集を行う。同時に、各相に 対して固溶体ならば正則溶体モデル、金属間化合物は副格子 モデルを適用する。以下に正則溶体モデルの自由エネルギー 関数を示す。

$$G^{\varphi} = \sum_{i} (x_i^{0} G_i^{\varphi} + RTx_i \ln x_i) + \sum_{i} \sum_{j>i} x_i x_j \Omega_{i,j} + \sum_{i} \sum_{j>i} \sum_{k>j} x_i x_j x_k \Omega_{i,j,k} \cdots$$
(4)

ここで、 G^{ϕ} 、R、 x_i は相 ϕ の自由エネルギー、気体定数、成分 iのモル濃度である。 ${}^{0}G^{\phi}$ は相 ϕ が純i成分の時の自由エネル ギーであり、SGTE (Scientific Group Thermodata Europe) 4 のデータベースから引用する。第2項は混合のエントロピー 項、第3項以降は原子間相互作用による過剰自由エネルギー 項でΩは相互作用パラメータである。ΩはAB2元系合金の場 合、Redlich-Kister級数で表される。

$$\Omega_{A,B} = \sum_{n} L_{AB}^{n} (x_{A} - x_{B})^{n}$$

$$L_{AB}^{n} = a + bT + cT \ln T + \cdots$$
(5)

相互作用係数L⁰, L¹, L²…は、2成分間の相互作用は概ね2以 下、3成分間以上はL⁰のみ考慮する場合が多い。そして各係 数内の温度項の比例係数を最小二乗法により最適化する。モ デルの詳細は割愛するが、CALPHAD法のアセスメントは金 属間化合物に対しても相互作用係数の温度関数の比例係数を 決める作業である⁵⁾。

図3にCALPHADアセスメントの流れ図をしめす。自由エ ネルギー関数が再現すべき条件とは、融点や相境界上の平衡 濃度点など状態図の直接情報と、反応熱や活量などエネル ギー関連に大別される。結果としての出力値は相互作用パラ メータの温度係数である。入力値が十分ある方がアセスメン トの精度は良くなる。しかし、入力値の相互パラメータの次 数や副格子モデルの取り方、実験結果の重みづけ方法など、 自由度が高い中で確からしい状態図を作り上げるのは熟練を 要する作業となる。

以上のように自由エネルギーの評価は、アセスメント時に 入力した情報を再現するように作られている。裏を返せば入 力していない組成域の再現性は保証されていない。商用デー タベースには適用組成域と計算可能相が、論文発表された データベースにもアセスメントに用いた入力値が明記されて いるので注意されたい。また、データベース自体が多元系で 構築されていたとしても、相互作用エネルギー項は3成分間 までしか考慮されていない。これは4成分間の相互作用を見 積もるに足る精緻な実験報告が無いことや、鉄鋼材料を始め とする多くの実用合金では高い含有量の合金成分は限られて おり、4成分間以上の相互作用は無視できるためである。

4、相成長の駆動力

過冷却液体から固相が晶出して成長するといった、系の相 変態過程の駆動力もギブスの自由エネルギーから見積もるこ とができる。以下では、核生成の駆動力を化学ポテンシャル の考え方と古典的核生成理論から説明し、最後に凝固中の界 面に働く駆動力についても触れる。

図3 CALPHAD法による自由エネルギーアセスメント

4.1 古典的核生成理論

古典的核生成理論では核生成の駆動力を自由エネルギー から見積もる。図4に示すように、平均組成 c^0 の系が溶融状 態から温度 T_1 まで過冷却したとする。系に固相 α が核生成す るための駆動力は、液相の自由エネルギーに c^0 で接線を引き c_e^{α} まで外挿した値と $G^{\alpha}(c_e^{\alpha})$ との差 ΔG_1 となる。ここで、 G^L $(c_e^{\alpha}) - G^{\alpha}(c_e^{\alpha})$ ではなく、図の ΔG_1 となることを理解するた めに、化学ポテンシャルを用いる必要がある。

化学ポテンシャルµはギブスによって導入された概念で、 等温等圧下で自由エネルギーと以下の関係にある。

$$\mu_i = \frac{\partial G}{\partial n_i} \tag{6}$$

ここで、iは成分、niはモル数である。成分iの原子が同じ原 子種に囲まれている場合(純物質中)と、異なる原子種に囲 まれている場合(合金中)では、原子間の相互作用により系 の一部として保持するエネルギー量が異なる。この合金中の 各成分原子が相の自由エネルギーへ寄与するエネルギー量 の原子1個当たりの原子種別平均値が化学ポテンシャルであ り、同じ原子種であっても組成によって異なる値を取る。化 学ポテンシャルは通常1モル当たりの値として規格化され、 平均組成 c⁰での1モル当たりの自由エネルギーは、

$$G^{L}(c_{0}) = \sum_{i} x_{i} \mu_{i}^{L}(c^{0})$$
(7)

と表される。ここで、xiは成分iのモル分率である。また上式 を図4中に図示すると、液相の溶質と溶媒の化学ポテンシャ ルはそれぞれ、G^Lのc⁰での接線と両縦軸との交点となる。

核生成の駆動力に話を戻す。平均組成c⁰の系であっても熱ゆらぎによって局所的にc⁰とは異なる原子の構成比の原子

図4 核生成の駆動力と化学ポテンシャル

集団が生じる。その微視的領域 (原子集団)の自由エネルギー はその原子1個当たりのエネルギーをその構成比で足し合わ せて規格化したものとなるため、 G^L の c^0 接線上に存在する。 つまり液相中に局所濃度 c_e^a を持つ固相核の前段階の原子集 団 (エンブリオ)が発生した場合、そのエネルギーも接線上 の濃度 c_e^a の値となる。ちなみに $G^L(c_e^a) - G^a(c_e^a)$ の値は、平 均組成 c_e^a の液相から c_e^a の固相が核生成するための駆動力で ある。

このように、液相が過冷却し、核生成の駆動力ΔGが生じ たとしてもすぐに固相の核は生成しない。液相から固相が生 成する時に同時に生成される固液界面に過剰エネルギーが存 在するためである。この界面の過剰エネルギーが界面エネル ギーと呼ばれる。

半径rの球形の固相が生成した時の自由エネルギー変化 Δg は、

$$\Delta g = -\frac{\Delta G}{V_m} \frac{4\pi}{3} r^3 + \sigma \cdot 4\pi r^2 \dots \tag{8}$$

となる。ここで、 V_m はモル体積、 σ は固液界面エネルギーで あり、第一項が固相への変態による自由エネルギー利得、第 二項は固液界面生成に必要なエネルギーである。 Δg の概形 を図5に示す。 r^* で極大値 Δg_{r*} を示し、熱ゆらぎによって半 径 $r < r^*$ のエンブリオが発生したとしても、半径増大方向の 自由エネルギー変化が正となるためエンブリオは自発的に成

Radius of embryo

図5 エンブリオ生成による自由エネルギー変化(斜線部では核生成 が速やかに起こるためエンブリオとしては存在しない)

長できない。一方、半径 $r=r^*$ のエンブリオが発生すると成 長による Δg の変化が負となり自発的変化が可能、つまり固 相成長が始まる。ここで r^* を温度 T_1 での臨界核半径と呼ぶ。 臨界核の一モル当たりの数 N_r 。は、統計熱力学によって、

 $N_{r^*} = N \exp(-\Delta g_{r^*} / k_B T_1) \dots (9)$

と求めることができる。*N*は1モル原子数、*k*_Bはボルツマン 係数である。

この臨界核に原子が1個でも加われば核として成長してい くと考えると核生成の頻度*I*は、上記の核密度に対して原子 付加に関する係数βを掛け合わせた数となる。

ここでβは臨界核の表面状態と原子の移動頻度に関する項か らなる^{6,7)}。以上は均質核生成理論とよばれ、均質な液相から 固相核が析出する場合を想定している。実際の核生成は、鋳 型表面や非固溶粒子など既存の固液界面上に起こることが一 般的である。このような核生成は不均質核生成とよばれ、式 (8)の各項が、異質核と固相の接触角の関数により補正され る。

4.2 固液界面の駆動力

核生成の後の固相の成長プロセスにおける駆動力も核生成 と同じように考えることができる。c⁴, c⁴_iを固液界面前後の 液相と固相の濃度とすれば固液界面成長の駆動力は、

$$\Delta G_{L \to \alpha} = G^L(c_i^L) - G^{\alpha}(c_i^{\alpha}) - \mu^L(c_i^L)(c_i^L - c_i^{\alpha})$$
.....(11)

となる。これは濃度*c¹*で液相の自由エネルギーに接線を引 き、*c^{*}*iまで外挿した値と、*G^{*}*(*c^{*}*)の差である。多成分系の場 合、式 (11) 第3項が成分数だけ追加される。 ギブスの自由エネルギーは系が進むべき方向とその駆動力 を与えてくれる。しかし実際にどのような凝固組織が形成さ れるかは駆動力だけでなく、伝熱、界面エネルギーや溶質原 子の拡散によって決まる。その詳細については、シリーズ第 2回「凝固現象の基礎と数理II:界面成長・デンドライト成 長」で述べられる。

5 おわりに

本稿では「凝固現象の基礎と数理 I」として、凝固に関わ る熱力学と状態図について解説を試みた。紙面の関係で「基 礎と数理」というタイトルにも関わらず、数式の展開等に十 分なスペースを割くことを出来なかった。これについては参 考文献⁶⁷⁾に詳しい。また、熱力学の中で分かりにくい概念で あるエントロピーやエンタルピーを簡単にしか説明できな かった。こちらも良書があるので参考にして頂きたい⁸⁾。本 稿が読者の凝固現象理解の一助になれば幸いである。

参考文献

- 1) J.W.Gibbs : The Scientific papers, 1 (1906), Dover Pub.
- 2) ThemoCalc : http://www.thermocalc.com/
- 3) PANDAT : http://www.computherm.com/, CaTCalc : http://staff.aist.go.jp/k.shobu/CaTCalc/, FactSage : http://www.factsage.com/
- 4) A.T.Dinsdale : CALPHAD, 15 (1991) 4, 317.
- 5)阿部太一:材料設計計算工学計算熱力学編,内田老鶴圃, (2011)
- 6) W.Kurz and D.J.Fisher : Fundamental of Solidification phenomena, (1998) , Trans Tech Pub.
- 7) 西澤泰二:ミクロ組織の熱力学,日本金属学会,(2005)
- 8)渡辺啓著:エントロピーから化学ポテンシャルまで、裳 華房、(1997)

(2013年5月20日受付)