

Non-destructive Inspection System using Quantum Beam for Deteriorating Transportation Infrastructure

理化学研究所 光量子工学研究領域 光量子技術基盤開発グループ 大竹淑恵 中性子ビーム技術開発チーム チームリーダー Yoshie Otake

連 携 記 事

理化学研究所 光量子工学研究領域 光量子技術基盤開発グループ 中性子ビーム技術開発チーム 研究員

須長秀行 Hideyuki Sunaga

し はじめに

我が国には、高速道路から市町村道に至るまでの約120万 kmの道路に、約15万の橋梁(橋長15m以上)が存在してい る¹⁾。これらの多くは昭和30年代に始まる高度経済成長期を 中心に大量に建設され、我が国の経済成長と国民生活の向上 に大きな役割を果たしてきた。

しかし、全国約15万の道路橋のうち建設後40年を超える 橋梁が、2015年(平成27年)には約40%に相当する約6.4万 橋になることが見込まれ、国土交通省直轄国道橋梁に関する 点検結果では、40年以上経過した約5000橋の約半分に対し て早急な補修が必要とされている²⁰。また、最近の中央道笹 子トンネル天井崩落事故で見られるように、道路橋で重大な 損傷が発生し、万が一でも崩落事故となれば国民の生命、財 産に危険が及び、復旧にも長期間を要するなど大きな社会的 損失が生じることとなる。

このように、疲労や劣化等による道路橋の損傷に対しては 早期に適確な対応を行なうことが絶対不可欠である。また、 道路橋の安全・安心の確保及び架け替え等による多額な投資 を回避していくためにも我が国の道路橋の経年劣化に対する 対策は喫緊の課題となっている。

現在、国が直轄する道路橋では、対象とする部位、部材に 応じて近接目視を中心とする手法で定期点検が行われてい る³⁾。しかし、コンクリート中に埋め込まれた部材や、その構 造から直接見ることのできない部分など、そもそも目視点検 では確認できないところに重大な損傷が隠れていることがあ る。こうした目視点検での限界を補う上で、例えば内在する 亀裂、空隙や鉄筋腐食など内在する損傷や劣化を科学的にか つ確実に発見し、的確に診断できる高度な非破壊検査手法の 実用化が期待されている⁴。

しかし、実際に非破壊検査として利用されている手法の大

半は、構造物の局部的な欠陥検出適用に限定されている。鉄 筋コンクリートでは表面から十数cm程度の深さまでしか詳 細な内部情報を取得できない。また、鉄筋間隔が狭い場合や、 何層にも鉄筋が配筋されているような大型構造物(橋脚な ど)の場合には、表層の鉄筋しか非破壊では調べることがで きない⁵⁾。既存構造物の維持管理全体を考えると、本来の非 破壊検査の役割としては、機能及び性能両面で未だ不十分で あり、これらの問題を解消した新たな検査技術の開発が求め られている。

本稿では、コンクリート内部数十センチに位置する鋼材の 状況や水を識別できる新たな非破壊検査手法として注目され ている中性子線について、理化学研究所(理研)が研究を進 めている小型中性子源を使用した中性子イメージング技術の 現状を紹介しながら、今後を展望する。

2,小型中性子源の適用事例

2.1 小型中性子源について

非破壊検査にはX線が広く用いられている。しかし、X線 は重い元素ほど透過しにくくなる特性を持ち、産業用X線 CT装置で鋼板厚さ1cm程度が限界となる等大型構造物を構 成する鉄骨及びコンクリート内部の鉄筋部材を透過観察する ことは難しい。一方、中性子線は重い元素でも透過できる特 性(図1参照)と水素等軽い元素の可視化に優れていること から、鉄骨や鉄筋の腐食に影響を及ぼす水の識別も可能であ る⁶。

従来は、原子炉や大型加速器による大規模な施設でしか中 性子線源を利用することができなかった。そのため、利用機 会及び測定場所・環境が限られると共に試料もサイズ・重 量・材料面でも制約されている。

理研では、イオン源で発生させた陽子を線形加速器で

7MeVまで加速させて軽金属ターゲットに照射することに より、核反応を介して効率的に中性子を発生させて試料を観 察するシステムを全長約15mのコンパクトな装置(RIKEN Accelerator-driven Neutron Source = RANS)として実現さ せた(図2参照)。

2.2 小型中性子源「RANS」による測定事例

図3にASTMの感度インジケータを小型中性子源「RANS」 を使用して撮像した透過画像を示す。実際にインジケータを 形成する樹脂材料の各部位における厚みの違いが、透過画像 において明確に輝度差として検出されている。また、樹脂材 料の隙間に配置された異なる厚みを有するアルミ板材(箔) に対しては、厚さ25µm以上のアルミ箔で輝度差をもとに確 認できる。

図4は、水を封入した奥行寸法の異なる合成石英製セル (容器)を並べて、容器奥行方向にX線または中性子線を照射 することにより撮像した透過画像を示す。X線透過画像(図

図2 理研小型中性子源 (RANS) の全景

図3 ASTM 感度インジケータの透過画像

4 (b) 参照) では、容器の奥行寸法が異なっても濃淡差がほ とんどなく水の量に対する透過性の違いが確認できない。小 型中性子源「RANS」を使用した中性子線透過画像(図4 (c) 参照) では、奥行寸法が大きい容器ほど水の量が多くなるの に従い、X線とは異なり中性子線では透過性の違いが発生す ることにより画像の濃淡差として示される。小型中性子源 「RANS」では、構造物内部に潜む鉄の腐食に影響を及ぼす水 の存在が透過画像の濃淡差として可視化できると考えられ る。

2.3 コンクリート橋梁の観察例

橋梁は、鉄鋼部材で構成される鋼橋以外に、鉄筋コンク リートを主に使用したRC (Reinforced Concrete)橋、コンク リート内部に埋設されたシース管内に鋼材を挿入して圧縮応 力を付与した上でクラウト (コンクリート)にて密閉するこ とで強度を維持するPC (Prestressed Concrete)橋が多くを 占める。RC及びPC橋では、コンクリートを補強する鋼材が 橋梁の強度を維持する上で非常に重要となる。通常は、コン クリートによって鋼材が保護されているために鋼材が腐食す ることはないが、何等かの原因により鋼材が腐食すると強度 の維持が難しくなる。しかし、鋼材は数十センチの厚みとな るコンクリートに遮られているために、非破壊検査は難しく コンクリートをはつる等微破壊を伴う検査が行われている。

図5 (a) (b) は、厚み50cmのPC橋梁構造をもとに中央部 にシース管を模した空洞を配置して内部に鋼製ワイヤーを

図4 水を封入した合成石英セルの透過画像

通し、中央部で鋼製ワイヤーが断裂した構造体モデルを示 す。3MeVの中性子線をモデル側面から照射することにより 得られる透過画像を放射線の挙動を模擬するモンテカルロ計 算コードPHITS⁸⁰により解析した結果を図5(c)(d)に示す。 シース中央部の鋼製ワイヤー破断部が観察できる。解析結 果では、構造部材を透過したビームに対して、3MeVのビー ム領域のみを抽出して可視化処理を行った。シース管内部の 空隙部とともに鋼製ワイヤー破断部が確認できる。また、鋼 製ワイヤー破断領域に水が存在すると仮定して解析するこ とで、同様の可視化結果にて水の有無による影響が確認でき る。

セメントコンクリートで造形された小片に対して、出力 1MWの実験原子炉を使用して中性子イメージングを行い、 透過画像をもとにCT再構成により得られた断層画像を図6 に示す。セメントコンクリート内部に埋め込まれた鉄筋及び 水を含んでいるかの有無が確認できる。

(a) 中性線イメージング試験状態 (c) 中性子線透過画像(正面・側面)

3 可搬型中性子源実用化に向けた 課題

現在の据置型小型中性子線源は放射線管理区域内に設置す る必要があるが、既に装置全体に対して、鉛及びボロン入り ポリエチレン等を組み合わせて遮蔽を施すことにより、線源 周囲の安全性が十分確保できている。しかし、将来の可搬型 中性子源として屋外で使用するには、放射線遮蔽材を含めた 装置全体の小型化と同時に重量軽減、さらに移動体としての 安全性を考慮した走行衝突時の放射性物質飛散の危険性回避 に向けた対策等が必要となる。

さらに、高感度な検出器と画像解析技術の高度化を図り、 中性子線源の更なる短パルス化を実現することにより、従来 よりも鮮明な透過画像の取得が中性子線の出力を抑えても可 能となる。これにより、発生する放射線量が飛躍的に低減で き装置全体のサイズ・重量も軽減できる。

シンチレータと光センサーより構成される検出器には、従 来は高圧電源を必要とする光電子倍増管と可燃性の液体シン チレータが一般的に採用されている。しかし、著者らは、低 電圧で安定的に動作する MPPCを採用し、新たにプラスチッ クシンチレータに用いることにより、屋外で安全に使用でき る検出器を実現している。

効果的な橋梁の予防保全を実現するには、小型中性子源等 による内部劣化情報の取得に併せて、観察されたコンクリー ト亀裂、鉄筋やPC鋼材の断面積減少や破断、空洞、錆等の存 在が橋梁構造全体にどのように影響を及ぼすかを的確に診断 できるシステム構築が必要不可欠である。しかし、従来のも のづくり支援を主体とする情報技術(CAD/CAE/CAM)で は、あくまでも設計形状、すなわちCADで表現された理想 的な形状,及び均質な材質で構成されていることを前提とし ている。そのため、既に供用中の橋梁のように劣化等により 実物が設計形状と異なり、内部欠陥や不均一な物性を持つ状 態を考慮する必要がある事例では、計算力学的手法の適用は 難しく、主に統計手法にもとづく健全性評価が試行されてい る⁹。

理研では、X線CTイメージング断層画像をもとに空洞等 欠陥形状を含めた実物の内部情報及び物性情報を保持した3 次元モデルを創成し、熱流体や構造解析等さまざまな数値シ ミュレーションが使用できるシステムを構築している¹⁰。

図7は、実際の鉄筋コンクリート構造部(住宅基礎部材) から切り出された部材のX線CTイメージングデータをもと に、部材を構成する粗骨材、セメントコンクリート部、鉄筋 部材及び空洞ごとに異なる媒質として定義された3次元モデ ルを示す。さらに、住宅基礎部材に圧縮荷重が負荷された状 態を想定した解析結果を図7を行った。粗骨材及び鉄筋部材

図7 現物にもとづく構造解析プロセスによる強度予測

図8 中性子線による橋梁の非破壊検査システム予想図

が他の部分より大きい応力が発生しており、圧縮負荷に対し て重要な役割を担っていることが観察できる。

前述のように解決すべき技術的課題はあるが、可搬型中性 子源実用化に向けた研究開発を積極的に推進することで、車 両内部に小型中性子源とデータ解析システム、橋梁の下部に 大面積イメージング検出器が搭載された図8に示すような中 性子源による橋梁の非破壊検査システムを実用化させること は可能である。

4 おわりに

供用中の国道の橋で最も古い橋は、1888年に建設された国 道34号の湯野田橋、また、東京の日本橋は1911年建設で全 国第3位の長寿命橋とされる。橋梁の長寿命化を実現するに は、人間と同様に早期に損傷(病)を特定して適切な対策(手 当て)を行うことが重要である。手当てが遅れると損傷が著 しくなり、結果的に短い供用期間で架け替えが必要となる等 無駄な費用と時間を費やすこととなる。人間の病と同様に内 在する損傷や劣化(老化)を定量的にかつ確実に発見し、的 確に診断できることが必要不可欠である。こうした要求に応 える新たな道具として、中性子線源による非破壊検査システ ム実用化の可能性について述べた。筆者らは、据置型の小型 中性子源にてリチウム電池等ものづくりへの応用に向けた 研究等行っている。いずれも従来の計測手法では入手できな かった有用な情報が得られており、小型中性子源の利便性も 含めた大型加速器にはない有用性を痛感している。今後、さ まざまな分野で小型中性子源の利用が発展していくと同時 に、手軽な小型中性子源実用化に向けた研究開発が進展して いくことに期待したい。

参考文献

- 1) 深澤淳志:橋梁と基礎, 42 (2008), 14.
- 2)国土技術研究センター, www.jice.or.jp/jishu/t2/pdf/shiryo17.pdf
- 3)小川篤生:コンクリート光学, 47 (2009) 9, 33.
- 4) 村越潤:橋梁と基礎, 42 (2008), 33.
- 5) NIKKEI CONSTRUCTION, 2011.12.12 (2011), 62.
- 6)山形豊:理化学研究所/土木研究所 合同シンポジウム,(2010),61.
- 7) T.Nakayama, et. al : Kobe Steel Eng. Rep., 51 (1999), 29.
- 8)日本原子力研究開発機構,http://phits.jaea.go.jp/
- 9) 小林 潔司: 土木学会誌, 95 (2010) 12, 14.
- 10) 須長秀行,他:理研シンポジウム (VCADシステム研究 2010),(2011),74.

(2013年9月9日受付)