

今振り返ってみて、行間にこめた思い、エピソード

転位易動度と脆性―延性遷移挙動*

Dislocation Mobility and Its Relationship to Brittle-to-ductile Transition

田中將己 Masaki Tanaka 九州大学工学研究院 材料工学部門 准教授

今回から新企画として「私の論文」の掲載がスタートした。 これは鉄と鋼、ISIJ Internationalに掲載された論文をより楽 しく(?)読んで頂けるように、本文中に書き切れなかったこ とや、行間を埋めるような解説、裏話等を執筆者によって紹 介する企画との事である。僭越ながら第1回目の記事として 投稿する機会を頂いたので、本稿では拙著「フェライト鋼へ のNi添加に伴う転位易動度変化と脆性—延性遷移¹¹」に関し て、この論文を執筆するに至った「背景の背景」を解説する。

2 該当論文の概要

まず該当論文¹¹を概説する。この論文では、フェライト鋼 の脆性-延性遷移(brittle-to-ductile transition:BDT)温度 が添加元素によって受ける影響を転位運動の観点から明ら かにする事を目的としている。その中でも、これまで鋼の低 温靭性を向上させることがよく知られているNiに着目した。 まず、Ni添加の効果以外を排除するため、Tiを添加した極低 炭素鋼を用いるとともに、熱処理条件を変えることで、粒径 をほぼ揃えた供試材を用いた。衝撃試験により遷移温度のNi 濃度依存性を測定したところ、これまで報告されている様に Ni添加に伴い遷移温度は低下した。更に、降伏応力の温度依 存性を測定したところ、低温ではNi添加とともに0.2%耐力 が低下し、いわゆる固溶軟化現象が見られた。低温でのフェ ライト中の転位運動はキンク対形成が律速していると考えら れており、歪速度急変試験から活性化体積を求め、このキン ク対形成エネルギーのNi濃度依存性を測定した。その結果、 Ni添加量が増えるに従って、キンク対形成エネルギーは低下 する事が明らかとなった。このことは、Ni添加量が増えると 低温で転位速度が上昇する事を意味しており、先の固溶軟化 現象と良く対応する。更に、転位易動度を変えて破壊靭性値 の温度依存性を転位動力学計算により求めたところ、転位速 度の増加が遷移温度の低下を引き起こすことが示された。即 ち、Ni添加に伴う転位易動度の上昇がNi添加鋼において低 温靭性を向上させるメカニズムである事が示された。

3、応力遮蔽効果

当該論文の基本コンセプトは応力遮蔽効果である。Bilby、 Cottrell、Swiden²⁰は、亀裂と塑性域を一次元に単純化し、亀 裂を亀裂面上に連続的に分布する転位として表現するいわ ゆるBCSモデルを提案した。このモデルでは、亀裂前方の 転位分布を、亀裂面上の仮想連続転位の相互作用と釣り合 うような転位密度関数とすることで与えた。しかし、このモ デルでは、転位の分布関数は求まるものの、亀裂先端局所応 力状態の変化を示す式を与えないことや、亀裂先端で転位 密度が無限大に発散すると言った問題点があった。なお、後 にThomsonによって与えられた応力遮蔽理論の式を用いて BCS亀裂の局部応力拡大係数を計算すると、その正味の値は 零になる。

RiceとThomson³⁾は、亀裂前方r(転位芯半径)の距離に 仮想的においた転位cを亀裂先端からその前方へ押し出すよ うな力が転位運動に対する抵抗力を超えると、この仮想転位 は実際に発生すると考え、亀裂先端からの転位発生条件を示 した。亀裂先端が原子直径程度の大きさを持つ非常に鋭い亀

*[今回の対象論文] 前野圭輝,田中將己,吉村信幸,白幡浩幸,潮田浩作,東田賢二:「フェライト鋼へのNi添加に伴う転位易動度の変化と 脆性-延性遷移挙動」,鉄と鋼, Vol.98 (2012), No.12, pp.667-674 (第76回俵論文賞受賞)

Fig.1 An atomically sharp crack is blunted when a dislocation is emitted from the crack tip when the Burgers vector has a normal component to the fracture plane³⁾.

裂から転位が発生すると、Fig.1で示すように、亀裂先端が バーガースベクトル一本分の大きさだけ開口する。この時に 亀裂先端にかかる力を求めたところ、その力は亀裂先端を押 さえ込むように働いており、転位による遮蔽効果の存在を示 唆していた。MajumdarとBurns⁴は、ModeIII亀裂のまわり にラセン転位を置き、亀裂先端局所応力拡大係数を求めたと ころ、そのらせん転位は亀裂先端の応力集中を減ずる働きを 持っていることを導き出した。これらの考えがいわゆる応力 遮蔽効果である。LinとThomson⁵⁾はこの理論をMode Iおよ びMode II亀裂に拡張し、二次元系で一般的に成り立つ局部 応力拡大係数を遮蔽効果を考慮して導出した。

ここで、この応力遮蔽効果を直感的に示すために、亀裂先 端近傍に転位線方向が紙面に垂直である刃状転位が二つペア で並んでいる時の亀裂周辺の応力場をThomosn potentialを 用いて計算した結果をFig.2に示す^{6,7)}。ここで示した応力成 分は亀裂面に垂直な σ_{yy}で、外力は全く負荷されていないた め、応力場の発生源は転位の弾性応力のみである。転位芯で は等高線が集中し、応力集中が生じていることはもちろんで あるが、ここで注目すべき点は、それに加え亀裂先端にも応 力集中が生じている事にある。この等高線は2MPa毎に描い たもので、さらに陰影を施した領域が負の値、即ち圧縮場を 示している。この圧縮応力場は、外力による引張り応力集中 を緩和(遮蔽)するため、破壊靭性値は上昇することになる。 この亀裂先端近傍に発生した転位が巨視的破壊靭性へ与える 影響に関する詳細は、「鉄と鋼」に掲載されたレビュー記事を 参照して頂きたい⁸⁾。

Fig.2 Shielding effect by a couple of dislocations: (a) A couple of edge dislocations in front of a crack. (b) Contour map of stress induced by the dislocations. The stress comportment is normal to the crack plane. Shaded area indicates compressive stress. The unit of the stress is MPa.

4、応力遮蔽効果の実証

応力遮蔽効果はその起源が転位によって生じる弾性応力で あり、弾性論を基盤としてまず理論的に予測され、次にその 実証が進められた。東田らは、まず透過性のNaCl単結晶を用 いて、転位による応力遮蔽場を光弾性法により可視化した^{6,7)}。 光弾性法は複屈折を利用して結晶内の応力場を可視化するこ とができる手法である。彼らは亀裂を導入したNaCl単結晶 にmode Iの開口が生じるような荷重を加え、除荷後の亀裂 先端近傍の光弾性観察を行った。その結果、mode Iの開口を キャンセルするような応力場が残留している事を透過光の 色によって識別し、遮蔽場の存在を初めて実証した。さらに、 高温で転位を導入し、除荷した後に室温で再度同じ試料に荷 重を負荷する実験も行った。外力負荷にともなう引張応力の 増加にともなって、圧縮の応力を示していた光弾性像は弱く なり、転位による圧縮応力がキャンセルされるところで、光 弾性像は消失する。この際の負荷応力拡大係数を求めること で、転位による遮蔽量を実測した。更に、試料を室温で破断 させ、そのときの破壊靭性値を求めたところその時の破壊靭 性値の上昇量は、先に求めた転位による遮蔽量とほぼ一致し ていた。

これらマクロな視点による実証の後に、メゾスコピックな 解析も行われ、亀裂先端に発生した転位を超高圧電子顕微鏡 法によって直接観察する試みも進められた⁹¹²⁾。そこでは、亀

裂先端を選択的に薄膜化し、亀裂先端近傍に発生した転位の 三次元構造とともに、転位のバーガースベクトルをその符号 まで含めて詳細に決定している。それらの値から、転位によ る局部応力拡大計数を実測し、発生した転位は亀裂先端を遮 蔽するタイプの転位である事を実証している。 更に近年で は、高分解能電子顕微鏡法を用いた原子オーダーでの弾性歪 解析により¹³⁾、転位を視野に含む亀裂先端の弾性歪場が実 測され、亀裂先端近傍の弾性歪が確かに転位の弾性応力場に よって生じる圧縮場である事も実験的に示された¹⁴⁾。

○5、応力遮蔽理論とBDT温度

St.JohnはSi単結晶を用いて、BDT温度(T_{BDT})と歪速度 (*ɛ*)の間には、

 $\dot{\varepsilon} = \varepsilon_0 \exp\left(-\frac{\Delta G_{BDT}}{kT_{BDT}}\right)$ (1)

なる関係がある事を示した。なお、ΔG_{BDT}は遷移温度の歪速 度依存性から求まる活性化エネルギー、T_{BDT}は遷移温度、k はボツルマン定数、ε₀は係数である。彼は遷移温度と歪速度 のアレニウスプロットを取る事で、その活性化エネルギーを 測定し、AGBDTの値がシリコン中の転位移動の活性化エネル ギー (ΔG_d) とほぼ等しいことを示した。これによって、変 形温度上昇に伴って破壊モードが脆性的から延性的に遷移す る挙動を支配しているのは転位の移動である事を示した。こ の論文のポイントはBDT挙動を亀裂先端近傍での弾性応力 場の広がりと転位運動の観点から考えたことである。彼は、 負荷応力拡大係数の増加に伴う亀裂先端近傍の弾性応力集 中場の広がりと、亀裂先端の塑性域(転位速度)の競争を考 えており、転位速度が弾性場の広がりに十分ついて行けるほ ど早くなる温度が遷移温度となると言う考えを示した。この 研究が契機となり、比較的パイエルス応力の高い幾つかの単 結晶を用いて(鉄合金では無いことに注意されたし)、 $\Delta G_{\rm BDT}$ と $\Delta G_{\rm d}$ の比較が行われた。Table $1^{15-20)}$ にそれらの値を比較 して示すが、両者に良い一致が見られている。このことから、 BDTの発現を制御・律速している素過程は転位運動である と結論づけられる。即ち転位が動き易い結晶では遷移温度が 低く、動き難い結晶では遷移温度が高くなる。

更にTable 1中の単結晶Siの結果に注目してみる。n-type Si は純度の高いIntrinsic SiにPやAsを添加しているものを指す が、Intrinsic Siに比べて ΔG_d が低い。このことは、PまたはAs 添加により転位易動度が上昇していることを示しており、遷移 温度の低下が期待される。実際にSiにこれら元素を添加した場 合、遷移温度が低下する事が報告されている^{21,22)}。転位が動き やすくなることによって、亀裂先端からより多くの転位が放出

Material	∆G _{BDT} (eV)	⊿G _d (eV)	
Intrinsic Si ¹⁵⁾	2.1	2.2	
n-type Si ¹⁵⁾	1.6	1.7	
Sapphire ¹⁶⁾	3.2	3.2	
Intrinsic Ge ¹⁷⁾	1.54	1.58	
GaAs ¹⁸⁾	1.3 (+0.8 / -0.4)	1.1 ± 0.1	
Diamond ¹⁹⁾	3.06 ± 0.25	2.6 ± 0. 5	
Mo ²⁰⁾	0.49	0.49	

Table 1 ΔG_{BDT} values for various materials.

され遮蔽量が多くなるため、より低温でも延性が増すことにな り、結果として遷移温度が低下する23,24)。

鋼には多くの添加元素が含まれており、それぞれの添加元 素が転位易動度に影響を直接与えるならば、それに伴って遷 移温度も変化する事が期待される。BDT挙動の研究は主に 単結晶モデル材料に限定されていたが、近年は遮蔽理論のコ ンセプトを鉄鋼材料へ応用しようという試みが進められてい る²⁵⁻²⁹⁾。そのような中で当該論文は、数多ある添加元素の中 でまずはNiに着目し、Niが転位易動度そしてBDT挙動に与 える影響について検討したものである。

6 おわりに

「私の論文」として、「フェライト鋼へのNi添加に伴う転位 易動度変化と脆性-延性遷移」の「背景の背景」について解説 した。鋼のBDT挙動を理解するには、まずは各種添加元素が 単独に転位移動と結合性に与える影響をそれぞれ理解する必 要がある。本稿では、主にBDT挙動に与える転位易動度の影 響に着目して述べたが、BDT挙動にはGriffith 理論³⁰⁾ が示す ように破壊表面エネルギーも考慮する必要がある。さらに組 織の影響まで含めて考えていくと、考慮すべき因子は膨大と なる。しかし、これらを一つ一つ地道に明らかにしていくこ とで鋼のBDT挙動の理解が深まると考えている。近年我々 のグループでは、極低炭素フェライト鋼に及ぼすAl、Mnの 影響^{31,32)}や、高窒素オーステナイト鋼に及ぼすCuの影響^{33,34)} などについても研究を進めているので、あわせてご笑覧頂け れば幸いである。

参考文献

- 1) 前野圭輝, 田中將己, 吉村信幸, 白幡浩幸, 潮田浩作, 東 田賢二:鉄と鋼,98 (2012),667.
- 2) B.A.Bilby, A.H.Cottrell and K.H.Swinden : Proc.Roy. Soc.London, A272 (1963), 304.
- 3) J.R.Rice and R.Thomson : Philos.Mag., 29 (1974), 73.
- 4) B.S.Majumdar and S.J.Burns : Acta Metall., 29 (1981),

579.

- 5) I.H.Lin and R.Thomson: Acta Metall., 34 (1986), 187.
- K.Higashida and N.Narita : JJAP Ser.2, Lattice Defects in Ceramics, (1989), 39.
- 7) N.Narita, K.Higashida, T.Torii and S.Miyagi : Mater. Trans.JIM, 30 (1989), 895.
- 8) 東田賢二, 田中將己: 鉄と鋼, 97 (2011), 195.
- 9) K.Higashida, S.Okazaki, T.Takahashi, N.Narita, T.Morikawa and R.Onodera : Mater.Sci.Eng.A, 234 (1997), 537.
- K.Higashida, N.Narita, M.Tanaka, T.Morikawa, Y.Miura and R.Onodera : Philosophical Magazine A, 82 (2002), 3263.
- M.Tanaka, K.Higashida, K.Kaneko, S.Hata and M.Mitsuhara: Scripta Mater., 59 (2008), 901.
- 12) M.Tanaka and K.Higashida : Mater.Sci.Eng.A, 400-401 (2005), 426.
- M.J.Hÿtch, J.-L.Putaux and J.-M.Pénisson : Nature, 423 (2003), 270.
- D.R.Adhika, M.Tanaka, T.Daio and K.Higashida : Microscopy, In press, doi : 10.1093/jmicro/dfv032.
- 15) J.Samuels and S.G.Roberts : Proc.R.Soc.Lond.A, 421 (1989), 1.
- H.S.Kim and S.Roberts : Journal of the American Ceramic Society, 77 (1994), 3099.
- F.C.Serbena and S.G.Roberts : Acta Metall., 42 (1994), 2505.
- S.Fujita, K.Maeda and S.Hyodo : Philos.Mag.A, 65 (1992), 131.
- V.I.Trefilov, Y.V.Milman and O.N.Grigoriev : Prog. Crystal Growth Charact., 16 (1988), 225.

- P.B.Hirsch, A.S.Booth, M.Ellis and S.G.Roberts : Scripta Mater., 27 (1992), 1723.
- 21) M.Brede and P.Haasen : Acta Metall., 36 (1988), 2003.
- Y.-J.Hong, M.Tanaka and K.Higashida : Mater.Trans., 50, (2009), 2177.
- 23) P.B.Hirsch, S.G.Roberts and J.Samuels : Proc.R.Soc. Lond.A, 421 (1989), 25.
- 24) A.Hartmaier and P.Gumbsch : Philos.Mag.A, 17-18 (2002), 3187.
- 25) T.D.Joseph, M.Tanaka, A.J.Wilkinson and S.G.Roberts: J.Nuc.Mater., 367-370 (2007), 637.
- 26) M.Tanaka, A.J.Wilkinson and S.G.Roberts : J.Nuc. Mater., 378 (2008), 305.
- 27) M.Tanaka, N.Fujimoto and K.Higashida : Mater. Trans., 49 (2008), 58.
- 28) K.Ha, C.Yang and J.Bao : Scripta Metallurgica Et Materialia, 30 (1994), 1065.
- M.Tanaka, S.Takano and K.Higashida : Mater.Trans., 54 (2013), 1624.
- 30) A.A.Griffith : Trans.R.Soc.London Ser.A, 221 (1921), 163.
- 31)田中將己,前野圭輝,吉村信幸,星野学,植森龍治,潮田 浩作,東田賢二:鉄と鋼,100 (2014), 1267.
- 32) M.Tanaka, K.Maeno, K.Higashida, M.Fujikura and K.Ushioda : ISIJ Int., 51 (2011), 999.
- 33) M.Tanaka, T.Onomoto, C.Furusho, T.Tsuchiyama and K.Higashida : ISIJ Int., 54 (2014), 1735.
- 34) M.Tanaka, T.Onomoto, T.Tsuchiyama and K.Higashida : ISIJ Int., 52 (2012), 915.

(2015年9月11日受付)