

シンクロトロン放射光を用いた 3D/4Dイメージングの現状

Present State of 3D/4D Imaging by Utilizing Synchrotron Radiation

豊橋技術科学大学 機械工学系 准教授

小林正和 Masakazu Kobayashi

九州大学 機械工学部門 助教

· 平山恭介 Kyosuke Hirayama

し はじめに

産発プロジェクト展開鉄鋼研究「4Dイメージング実現に よる鉄鋼材料研究の飛躍的高度化」(代表:九州大学戸田)に て、鉄鋼材料を対象とした3D/4Dイメージング研究推進の 機会をいただき、平成23年度~25年度にかけてプロジェク ト研究を推し進めた。産発プロジェクトを発端として、鉄鋼 材料においても高エネルギーX線の活用で分解能1µmの高 分解能観察が可能^{1,2)}となった。さらに、吸収端を利用した組 成分布³⁾の3D可視化や変形ボイド形成過程の4D観察⁴⁷⁾な どを報告した。「ふぇらむ」において、放射光を用いたイメー ジングの解説記事⁸⁾が2012年に戸田らによって書かれてい る。本稿では、先の解説記事で紙面の制限で触れられなかっ た、あるいは、プロジェクト中やそれ以後に利用できるよう になった放射光イメージング手法と最近の材料研究での活用 を紹介したい。

放射光イメージング手法の一つは、位相差を利用したイ メージング⁹⁾である。通常のX線CTは、X線吸収の差によっ て画像コントラストを得る。X線吸収差の少ない物質、例え ば、フェライト粒とオーステナイト粒のような場合の画像 コントラストは得難いことになる。しかしながら、位相差を 利用することで、内部構造を可視化することができるように なった。もう一つは、材料分野での応用例はまだ少ないが、 結像型X線CTを利用することで、100~160 nm程度の高分 解能¹⁰⁻¹²⁾で三次元観察が可能になっていることである。最近 の研究動向においては、材料内部を3Dや4Dで単に高分解能 観察するだけでなく、得られた3D画像を基にイメージベー スのモデリングの開発が進められており、現象の理解、材料 設計への活用が期待されていることが挙げられる。

九州大学

主幹教授

機械工学部門

(2) 位相差の利用

X線の位相変調は、単なるX線の吸収差に比べて物質密度 差による変化が大きい。しかしながら、吸収差は検出器でX 線強度として直接的に観測できるのに対し、検出できるX線 強度を基に位相差を画像化するには理論に基づいた工夫が必 要とされる。最も簡単な工夫としては、図1の模式図に示す ように、放射光ビームの高い平行性を利用して、試料と検出 器間距離を広げることで、図2に示すような界面コントラス トが強調された画像を得ることができる。図2からもわかる 通り、距離を広げすぎるとアーティファクトも強調され、見 たい構造そのものが不明瞭となってしまうので、位相差から 生じる界面屈折量と検出器の画素サイズを考慮して、適切な 試料・検出器間距離で撮像する必要がある。これは、屈折コ ントラストとして、物質界面を検出するために、良く利用さ

戸田裕之

Hiroyuki Toda

図1 放射光トモグラフィー (BL20XU)、(a) セットアップ模式図、 (b) 実際のセットアップ

図2 試料-検出器間距離、(a) 55mm、(b) 110mm、(c) 220mm を変化させたCTスライス画像(屈折コントラスト)

図3 (a) 通常のCTスライス画像、(b)、(c) 再構成手法によるCTスライス画像

れる方法である。

軽元素で構成されるため、もともと吸収差が少ない生体 物質や有機物質を対象としたイメージングにおいてはその 必要性から、より高度な位相差利用した可視化手法の開発が 進んでいる。現在、吸収差に加えて感度の高い位相差をも利 用した再構成手法¹³⁻¹⁶⁾が各種提案されている。その中でも、 Paganinらの位相回復法^{15,16)}は、観察対象が屈折率と線吸収 係数が既知の相で構成されているという前提を利用する事 で、一般的に必要とされる複数の条件下で撮像を行う必要が なく、X線減衰βと屈折率δの比が既知であれば、試料と検 出器を十分離した条件で通常のCT撮像と同様に撮像を行え ばよいことから、広く応用し易い簡便な方法として注目でき る手法である。再構成の骨込演算は、

という演算を施されてから為される。ここで、 $I(x, \theta)$ は透 過X線強度、 $I_0(x, \theta)$ は入射X線強度、 λ はX線波長、Lは試 料と検出器間の距離、Fおよび F^{-1} は、それぞれフーリエおよ び逆フーリエ演算子である。また、vおよびuはフーリエ変換 座標である。ありがちなシチュエーションとして、観察対象 の屈折率るは不明である場合が多い。したがって、図3に示 すように、 δ を再構成のパラメータとして、再構成を行う。 (a) の通常のCT画像では、屈折コントラストによって界面 部分のみが強調された画像であるが、位相回復再構成法で再 構成した(b)ではコントラストの違う2つの相が確認できる。 (c)は、δが適当でないので、全体的にぼやけたような再構 成画像となっている。なお、図3は、亜共晶Al-Si合金の初晶 アルミニウムデンドライトとAl-Si共晶相を上述の位相再構 成によって可視化したものである。AlとSiは、原子番号が1 番違いのためX線の吸収では明瞭に違いを得ることはできな いが、位相差を用いた再構成手法はこれを明瞭に捉えること ができる。この位相差を用いた再構成手法は、鉄鋼材料の研 究で既に応用がなされており、二相ステンレス鋼のα相とγ 相⁷⁹⁾や、二相鋼のフェライト相とマルテンサイト相⁶⁾ように 線吸収係数の差で識別困難なものでもコントラストが得られ る。これら文献を参照して、画像を確認していただきたい。

3 結像型X線CT

放射光CTの2次元検出器は、可視光変換型が用いられて いる。可視光変換型検出器は、シンチレータ、光学レンズ、 そして、デジタルカメラで構成される。シンチレータおよ びデジタルカメラ(以前はCCDが使われていたが、最近は CMOSが利用される)の性能向上により、以前に比べより高 速で良好な画質の撮像が可能となっている。しかし、可視光 変換型検出器では、X線をシンチレータで可視光にするため に、分解能の限界は可視光波長に対応し、1µm程度になる。 金属材料の研究に必要な顕微鏡の能力としては、分解能1µm は決して十分とは言えない。材料研究に限らず、多くの研究 分野において、より高分解能での3Dあるいは4D観察への要 求がある。SPring-8では、X線光学素子を活用してより高分 解能とする結像型X線CTの開発が進められている¹⁰⁻¹²⁾。結 像型X線CTのセットアップの模式図を図4に示す。SPring-8のSuzukiらによって分解能100~120nmが報告¹²⁾されてお り、それは、単に一時のチャンピオンデータではなく、現在 はSPring-8において常用可能な観察手法となっている点が、 日本の放射光施設が、高いイメージング技術力を有している ことを示している。X線エネルギーはX線光学素子が効率的 に働く、8keV~12keVが利用される。図5にアルミニウム缶 材(3000系アルミニウム合金)をSPring-8の結像型X線で 3D観察した結果を示す。図中に切断研磨面の電子顕微鏡写 真と断層スライスの比較も示すが、比較的粗大な粒子周りに サイズ1µm以下のMnを含む微細金属間化合物粒子が高分 解能で観察できていることが分かる。同様に、図6に亜共晶

図4 結像型放射光X線CTセットアップの模式図

図5 結像型放射光X線CTの分解能

図6 結像型放射光X線CTで三次元可視化したAI-7% Si鋳造合金の共晶相

Al-Si鋳造合金のSi粒子の3D観察図を示すが、高分解能に伴 い図で示した50 µm程度に試料のサイズも小さくしなければ ならない点を付記しておく。

4 イメージベースモデリング

放射光X線CTを用いれば、リアルな3次元表面形態およ びミクロ構造の内部形態が、3D画像として得られる。この 3D画像から、実物の精緻な力学解析用モデルを作成し、有限 要素解析等を実行することで、具体的な構造が力学特性にど のように影響しているかを知ることができる。このような方 法はイメージベースモデリング^{17,18)}と呼ばれる。医療用X線 CT等において、骨の力学特性評価や人工骨設計を目的に始 められたイメージベースモデリングは、X線CTの高分解能 化により、材料のミクロ組織への適用が可能となってきてい る^{18,19)}。図7は、ガリウムをアルミニウム合金の結晶粒界に拡 散させて、結晶粒構造を3D可視化し、その3D画像から、結 晶粒のイメージベースモデルを作成する様子を示している。 このように実際の材料内部のミクロ組織をモデル化すること ができる。

材料内部の局所的な応力分布やひずみ分布は、ミクロ組織 の位置関係や形態に加え、結晶構造由来の異方性等の影響を 受けため、その結果として生じる損傷や、き裂の発生といっ た局所的な事象のメカニズム理解にイメージベースモデリ ングは有効と考えられる。さらに、逆の立場に立てば、4D観 察によって事象の前後を捉えることができ、どこで損傷やき 裂が発生したのかが確認できるので、イメージベースシミュ レーションの予測結果と実際の比較が可能になる。これは、 今まで理論に基づいて構築されてきた既存のシミュレーショ ンが、何をどこまで再現できているかを知ることができると いうことを意味する。もし、現実と予測に不一致な点があれ ば、それを解消するアプローチが取れるのでシミュレーショ ン精度向上につながることが期待できる。X線CTの3D画像 から表面抽出を行い、イメージベースモデルを作成できる市 販ソフトウエアもいくつかあるが、今のところ、図7のよう な凝集した結晶粒モデルを作成する手法は十分確立されてお

図7 結晶粒のイメージベースモデリング、(a) ガリウム拡散像、 (b) 結晶粒の可視化、(c) イメージベースモデル

図8 X線回折による結晶方位同定の模式図

らず、試行研究^{20,21)}が試みられている。また、結晶塑性シミュ レーションでは、結晶粒の形態だけでなく、結晶方位情報も 必要である。現在は、図8に概略図を示すように、放射光ビー ムで試料を走査してX線回折を得ることで、三次元非破壊で 結晶粒の方位を計測する様々な手法も開発されており^{22,26)}、 放射光CTとの組合せで実験的に新たな知見が得られてい る^{26,27)}。図9は、X線CTでの撮像(図9(a))に加え、放射光 による結晶方位解析手法の一つであるDAGT法²²⁾により結 晶方位を取得し、図7で示したような手法でイメージベース モデルを作成(図9(b))して、結晶方位依存す変形過程を結 晶塑性有限要素解析した(図9(c)および(d))例である。今後、 これらの技術の活用によって、金属多結晶体の複雑な変形メ カニズムの再現・理解が進むものと期待されている。

さらに先進的な取組みとして、3D/4Dの実験観察とイ メージベースシミュレーションを組み合わせて、最適組織を 求め、材料組織設計に活かそうという研究開発も行われてい る。現在のところ、放射光実験もイメージベースシミュレー ションも、実験や解析は容易ではない。そこで、戸田らは、放 射光X線CTのような、取得できる機会は少ないながら、そ こで得られる情報は量的に膨大(例えば、材料内部において、 数多くの粒子の形態、サイズ、空間分布が、1度のX線CTに よって得られる)である情報に、そのイメージベースモデリ ングによる特性予測情報も加え、情報科学分野の各種の粗視 化および最適化手法を活用する²⁸³⁰⁾ことで、目的の力学特性 に合った最適組織を導く方策、リバース4D材料エンジニア リングを提案している³¹⁾。3D/4Dイメージングは、材料設計 への活用も期待されている。

5 今後の展望

簡単ではあるが、本報では、放射光を活用した3D/4Dイ メージングに関して、2012年以降の動向について述べた。位

図9 イメージベース結晶塑性有限要素解析、(a) X線CTによる結晶 粒の3D形態、(b) イメージベースモデル、(c) 計算結果:主応 力分布、(d) 計算結果:引張軸方向ひずみの分布

相差イメージングや高分解能イメージングが可能になってい る。得られた三次元情報の活用においては、イメージベース モデリングによるシミュレーションとの対比・融合へと展開、 そして、情報工学技術との組合せにより、将来、材料設計で 主要な役割を担うことが期待されている。もちろん、イメー ジングは、現在、基礎的な研究においても様々に活用されて おり、引張延性破壊³²³⁴⁾、曲げ破壊³⁵⁾、高温変形³⁶⁾、クリープ 変形³⁷⁾、熱処理³⁸⁾、疲労破壊^{39,40)}、腐食疲労⁴¹⁾、水素脆化⁴²⁾ な どへの応用がなされている。内容の詳細は紹介しないが、ご 興味があれば、それぞれの文献をご覧いただきたい。

謝辞

ここで紹介した多くの放射光実験に関して、長年に渡り技術的なご支援をいただいているJASRIの上杉健太朗博士、竹 内晃久博士、および、東京大学非常勤講師の鈴木芳生博士に 感謝いたします。科研費(S):24226015およびSPring-8採択 課題(課題番号:2016A0076,2016B0076)における研究支援 に感謝いたします。

参考文献

- D.Seo, F.Tomizato, H.Toda, K.Uesugi, A.Takeuchi, Y.Suzuki and M.Kobayashi : Appl. Phys. Lett., 101 (2012), 261901.
- 2) H.Toda, F.Tomizato, F.Zeismann, Y.Motoyashiki-Besel, K.Uesugi, A.Takeuchi, Y.Suzuki, M.Kobayashi and A.Bruckner-Foit : ISIJ Int., 52 (2012), 517.
- 3) M.Kobayashi, H.Toda, A.Takijiri, A.Takeuchi,Y.Suzuki and K.Uesugi : ISIJ Int., 54 (2013), 141.
- D.Seo, H.Toda, M.Kobayashi, K.Uesugi, A.Takeuchi and Y.Suzuki : ISIJ Int., 55 (2015), 1483.
- 5) D.Seo, H.Toda, M, Kobayashi, K.Uesugi, A.Takeuchi and Y.Suzuki : ISIJ Int., 55 (2015), 1474.
- 6) H.Toda, A.Takijiri, M.Azuma, S.Yabu, K, Hayashi,D.Seo, M.Kobayashi, A.Takeuchi and K.Uesugi : Acta

Mater., (2016), submitted.

- 7) H.Toda, F.Tomizato, R.Harasaki, D.Seo, M.Kobayashi,A.Takeuchi and K.Uesugi : ISIJ Int., 56 (2016), 883.
- 8) 戸田裕之,鈴木芳生,竹内晃久,上杉健太朗,小林正和: ふぇらむ,16 (2012),212.
- 9) D.Seo, H.Toda and M.Kobayashi : SPring-8 Research Frontiers 2013, (2014), 112.
- 10) A.Takeuchi, Y.Suzuki and K.Uesugi : AIP Conf. Proc., 1365 (2011), 301.
- A.Takeuchi, K.Uesugi, H.Takano and Y.Suzuki : Rev. Sci. Instrum., 73 (2002), 4246.
- 12) Y.Suzuki, A.Takeuchi, Y.Terada, K.Uesugi and R.Mizutani : AIP Conf. Proc., 1696 (2016), 020013.
- P.Cloetens, W.Ludwig, J.Baruchel, D.Van Dyck, J.Van Landuyt, J.P.Guigay and M.Schlenker : Appl. Phys. Lett., 75 (1999), 2912.
- 14) J.Baruchel, J-Y.Buffiere, P.Cloetens, M.D.Michiel,
 E.Ferrie, W.Ludwig, E.Maire and L.Salvo : Scripta Mater., 55 (2006), 41.
- D.Paganin, S.C.Mayo, T.E.Gureyev, P.R.Miller and S.W.Wilkins : J. Microscopy, 206 (2002), 33.
- 16) M.A.Beltran, D.M.Paganin, K.Uesugi and M.J.Kitchen: Optics Express, 18 (2010), 6423.
- 17) 桑水流理: 軽金属, 64 (2014), 525.
- 18) M.Teranishi, O.Kuwazuru, S.Gennai, M.Kobayashi and H.Toda : Mater. Sci. Eng. A, 678 (2016), 273.
- A.Hosokawa, H.Toda, R.Batres, H.Li, O.Kuwazuru, M.Kobayashi and H.Yakita : Mater. Sci. Eng. A, 671 (2016), 96.
- 20) I.Simonovski and L.Cizelj : Comput. Mater. Sci., 50 (2011), 1606.
- 21) M.Kobayashi, T.Matsuyama, A.Kono, H.Toda and H.Miura : Mater. Trans., 57 (2016), 2089.
- 22) H.F.Poulsen : Three-dimensional X-ray diffraction microscopy, Springer-Verlag, Berlin, Heidelberg, (2004)
- 23) M.Hefferan, S.F.Li, J.Lind, U.Lienert, A.D.Rollett, P.Wynblatt and R.M.Suter : Comput. Mater. Continua., 14 (2009), 209.
- 24) H.Toda, Y.Ohkawa, T.Kamiko, T.Naganuma, K.Uesugi,
 A.Takeuchi, Y.Suzuki and M.Kobayashi : Acta Mater.,
 61 (2013), 5535.
- 25) Y.Hayashi, Y.Hirose and Y.Seno : J. Appl. Cryst., 48 (2015), 1094.
- 26) H.Toda, T.Kamiko, Y.Tanabe, M.Kobayashi,

D.J.Leclere, K.Uesugi, A.Takeuchi and K.Hirayama : Acta Mater., 107 (2016), 310.

- 27) H.Li, H.Toda, K.Uesugi, A.Takeuchi, Y.Suzuki and M.Kobayashi : Mater. Trans., 56 (2015), 424.
- 28) H.Li, L.Gutierrez, H.Toda, O.Kuwazuru, W.Liu, Y.Hangai, M.Kobayashi and R.Batres : Inter. J. Solids Struct., 81 (2016), 151.
- L.Gutierrez, H.Li, H.Toda, M.Kobayashi, O. Kuwazuru and R.Batres : Inter. J. Comput. Theory Eng., 6 (2014), 234.
- 30) H.Li, L.Gutierrez, M.Kobayashi, O.Kuwazuru, H.Toda and R.Batres : Inter. J Comput. Theory Eng., 6 (2014), 272.
- 31) 戸田裕之, バトレスラファエル, 桑水流理, 小林正和, 細 川明秀:軽金属, 64 (2014), 518.
- 32) H.Toda, H.Oogo, K.Horikawa, K.Uesugi, A.Takeuchi,
 Y.Suzuki, M.Nakazawa, Y.Aoki and M.Kobayashi :
 Metall. Mater. Trans. A, 45 (2014), 765.
- 33) H.Toda, H.Tsuruta, K.Horikawa, K.Uesugi,
 A.Takeuchi, Y.Suzuki and M.Kobayashi : Mater.
 Trans., 55 (2014), 383.
- 34) H.Toda, T.Inamori, K.Horikawa, K.Uesugi,
 A.Takeuchi, Y.Suzuki and M.Kobayashi : Mater.
 Trans., 54 (2013), 2195.
- 35) 山本裕介, 浅野峰生, 吉田英雄, 小林正和, 戸田裕之: 軽 金属, 63 (2013), 453.
- 36) H.Toda, Z.A.B.Shamsudin, K.Shimizu, K.Uesugi, A.Takeuchi, Y.Suzuki, M.Nakazawa, Y.Aoki and M.Kobayashi : Acta Mater., 61 (2013), 2403.
- 37) C.Gupta, H.Toda, C.Schlacher, Y.Adachi, P.Mayr,
 C.Sommitsch, K.Uesugi, Y.Suzuki, A.Takeuchi and
 M.Kobayashi : Mater. Sci. Eng. A, 564 (2013), 525.
- 38) H.Toda, P.C.Qu, S.Ito, K.Shimizu, K.Uesugi, A.Takeuchi, Y.Suzuki and M.Kobayashi : Inter. J. Cast Metals Res., 27 (2014), 369.
- 39) 桑水流理, 松村圭吾, アギアルデソウザ ヴィニシウス, 小林正和, 戸田裕之: 軽金属, 64 (2014) 570.
- 40) 清水一行, 戸田裕之, J.Y.Buffiere, J.Lachambre, 上杉健太 朗, 小林正和:鋳造工学, 86 (2014), 19.
- 41) 塩澤大輝, 岡田宗大, 中井善一: 軽金属, 64 (2014), 564.
- 42) C.Gupta, H.Toda, T.Fujioka, M.Kobayashi, H.Hoshino, K.Uesugi, A.Takeuchi and Y.Suzuki: Mater. Sci. Eng. A, 670 (2016), 300.

(2016年11月9日受付)