

□第173回春季講演大会学術功績賞受賞記念特別講演 (平成29年3月17日)

寿命予測に向けての 腐食挙動評価手法の現状と課題

Present State and Visions of Evaluation Methods of Corrosion Behaviors for Life-time Prediction

*脚注に略歴

篠原 正 物質·材料研究機構 構造材料研究拠点 Tadashi Shinohara 特別研究員

し はじめに

省資源、省エネルギーが世界共通の目標となって久しい が、寿命予測や維持管理がいまだ重要な課題であることは 言うまでもない。そのためには、モニタリング、計測技術が 大変重要となる。本稿では、材料表面が十分な量の水溶液に 接している環境(没水環境)でおこる代表的な腐食形態とし てステンレス鋼の局部腐食を、また大気中で薄い水膜に覆わ れている環境(非没水環境)で生じる腐食形態として大気腐 食を取り上げ、それぞれの寿命評価法の現状について紹介す る。なお、寿命評価法¹¹および大気腐食評価技術については 別途解説²⁶⁰しているので、そちらも参考にしていただきたい。

2.1 再不動態化法

ステンレス鋼は代表的な耐食金属材料であるが、塩化物 を含む水溶液中では、孔食、すきま腐食などの局部腐食と呼 ばれる腐食損傷を生じることがあり、これらは応力腐食割れ (SCC)の起点にもなる。とくにすきま腐食は塩化物濃度が低 い環境においても発生・進展できるため、実機では大きな問 題となっている。すきま腐食が起こる条件を見出すのに再不 動態化法が用いられている。これは、いったん腐食環境を厳 しくしてすきま腐食を起こした後、これらの環境を温和化し てすきま腐食が停止する(再不動態化する)条件を決定する、 というものである。電位(E)、温度(T)およびCF濃度(C) について求めた臨界値をそれぞれ再不動態化電位 (E_R)、再 不動態化温度 (T_R)、および再不動態化濃度 (C_R)、という。E_R 測定法については、2002 年に JIS G 0592 として規格化され た。

水道水を用いたジェット水流で緯糸を挿入する方式の織機 において、ヘルドと呼ばれる13Crステンレス鋼製部品で腐 食が生じたことが報告されている⁷⁰。図1⁷⁷は2枚のヘルドか らなる金属/金属-すきまでの $E_R \ge C_R$ の測定結果である。低 濃度水溶液中で測定した C_R は E_R の延長線上にあり、すきま 腐食(成長/停止)の境界は E_R 、 C_R どちらでも決定できるこ とがわかる。図1において、水道水の条件は測定結果の右上 にあり($E>E_R$, $C>C_R$)、当該腐食損傷は、すきま腐食であるこ とが確認できた。

図1 2枚のヘルドからなる金属/金属-すきまにおけるE_RとC_Rの測 定結果(文献7)

^{*} 昭和60年3月東京大学大学院工学系研究科博士課程修了、昭和60年11月東京大学工学部金属材料学科助手、昭和63年2月同講師、平成4年 6月同学部金属工学科助教授、平成14年4月(独)物質・材料研究機構材料研究所ディレクター、平成21年4月同材料信頼性センターグループリーダー 等を経て平成27年3月同機構定年退職、平成27年4月同機構特別研究員、現在に至る。

2.2 すきま腐食の発生と成長

304鋼/ガラス-すきま下でのすきま腐食を観察した⁸⁾。当 初、すきま内部に点状の溶解が認められ、その後この溶解部 は開口部(試片の縁の部分)付近まで拡大して行く。SEM 観 察(図2⁸⁾)によると、すきま腐食は、起点となったところで 必ずしも深くまで進展するわけではなく、発生と進展とでお のおの機構が異なっていることが確認できた。

すきま腐食発生挙動は電位に依存する。比較的早い時間 内に発生するすきま腐食についての、保持電位と発生時間 (t_{INCU})の測定例を図3⁹に示す。なお、E_R近傍の低い電位で はすきま腐食発生時間が極めて長く測定が困難であり、図中 の関係がE_R近くまで延ばせるか否かのなどの検討が必要で ある。また、こうした発生試験では、試験片は研磨されてお り、ステンレス鋼表面は十分に不動態化しておらず、実機と 異なる表面状態になっている。こうした表面状態の効果をど のように見積もるかについても検討が必要である。

2.3 すきま腐食のモデル化

すきま腐食部でのpH低下は Cr^{3+} の加水分解 (Cr^{3+} + H₂O→Cr (OH) $^{2+}$ + H⁺) により、その Cr^{3+} はCFと錯イオ ンも生成する¹⁰⁾。また、すきま腐食部の高濃度溶液において はH⁺の活量係数が極めて大きくなり、pH はさらに低下する (図4¹⁰⁾)。この錯イオン生成と物質移動を考慮した、すきま腐

図2 すきま腐食のその場観察と腐食部のSEM 観察の例 (文献8を 編集)。(25°C 3% NaCI中、304鋼/ガラス-すきま、0.2V vs. SCE)

図3 保持電位と発生時間 (t_{INCU})の測定例 (文献9)

食進展過程の数値モデル化行われており (図5¹¹⁾)、実際に近い (例えば図2) すきま腐食挙動を再現できるようになって きた。

高濃度、低pH環境下での分極曲線などのデータが充実す れば、すきま腐食の発生から成長の過程における各種イオン 濃度あるいは電位の分布を推定できるようになろう。

2.4 ステンレス鋼/中性塩化物水溶液環境系でのSCCの発 生と進展

辻川¹²⁾によると、SCC発生起点は、直接貫入型と局部腐食 経由型(食孔経由型、すきま腐食経由型)に分類される。著者 らによれば、割れ速度(C)は、温度には依存するが、発生形 態だけでなく、電位あるいはCΓ濃度にも依存しない¹³⁾。ま た、SCCは、「金属が溶解し、かつそこでの割れ速度(C)が 溶解速度(*i*_w)より大きいときに限り」発生する。すなわち、 SCC発生電位域は

図4 CrCl₃水溶液におけるpHと濃度の関係(文献10を編集)

図5 すきま腐食進展数値モデル計算結果例(文献11を編集)

$E_R < E < E^V$

となる。ここでE^vは溶解速度と割れ速度が等しくなる電位 である。これをSCC発生に関する溶解・割れ両速度競合概念 (図6¹³⁾) という。

CF濃度や温度の低下に伴い E_R が上昇し、 i_w の下限値も大 きくなる。このため、SCC発生条件(i_w <C)を満たす電位域 がなくなり、SCCが発生しなくなる。また、すきま腐食はそ の高い閉塞性のために E_R が低く、SCCを起こしやすい。これ を応用し、すきま構造と応力条件(残留応力)の双方を有す るスポット溶接試片が、SCC性試験に適用されている^{14,15)}。

このように、再不動態化法やSCC試験結果をもとに、す きま腐食やSCCの発生を検討できるようになった。例えば、 304鋼 (18Cr-8Ni鋼) は、10ppm以上のCIを含む環境では 50°C以上の温度ですきま腐食を起点としてSCCを起こすと

図6 SCC発生に関する溶解・割れ両速度競合概念の模式図

言われている¹³⁾。しかし、実際には50°C以上の塩化物環境で 304鋼にすきま腐食もSCCも起らないこともあり、海水中に おいても汎用ステンレス鋼が使われている場合もある。この ようなことから、すきま腐食やSCCの機構解明を含め、それ らが『いつ、どこで、どのように』発生し成長して行くかを評 価できる手法の検討が必要となっている。

3.1 大気腐食モニタリング

大気腐食モニタリング法を表1¹¹にまとめた。

3.1.1 腐食挙動のモニタリング

3.1.1.1 電気化学的モニタリング

大気腐食は、薄い水膜下で進行するため、通常の電気化 学的手法が適用できない。二つの異種金属あるいは同種金 属を互いに絶縁した状態で環境へ露出し、その間を流れる 腐食電流を測定するというACM (Atmospheric Corrosion Monitor)型腐食センサは、こうした非没水環境中にも適用 でき、降雨の影響を直接受けない環境での炭素鋼の腐食速度 を推定できる¹⁶⁾(図7³⁾)。また、非没水系では困難とされたイ ンピーダンス測定も、センサ構造の工夫と伝送線回路モデル の適用によって、大気環境中でも行われるようになってきて いる¹⁶⁾。さらに、非接触型参照電極であるケルビンプローブ を用いることにより、大気環境中においても電極電位が測定 できるようになった。ステンレス鋼は、低湿度ほど発銹しや すいが、これは低湿度ほど塩濃度が高くなるだけでなく、電 位が高くなるためであることが確認できた(図8¹⁷⁾)。

測定	対象	手法	測定・評価法	測定・評価項目
腐食举動		電気化学的手法	ACM 型腐食センサ	腐食速度、ぬれ時間
			インピーダンス	腐食速度、ぬれ時間
			ケルビンプローブ	電極電位 (非接触照合電極)
		電気・機械的手法	QCM	重量変化 (検出限界 1~10ng/cm ²)
			電位差法	断面減少
			ひずみ測定法	断面減少
		光学的手法	直接観察法	断面減少
		操程通行	与免细测爆哭	涅度 湿度 降水量 圖向 圖連
		1成 107 /21 /22	入家戰的成命	[[[]] []] []] []] []] []] []] []] []] [
		化学分析	集積回収法・定量回収法	社会、社会、岸小星、黒肉、風速 大気汚染物質、雨水の pH
	気象因子	化学分析 雷気化学的手法	集積回収法・定量回収法 ACM型腐食センサ	1112 (112) (112
	気象因子	化学分析 【111111111111111111111111111111111111	(ス)家既内(Ran 集積回収法・定量回収法 ACM 型腐食センサ ガラス電極 pH 計	 血及、
環境因子	気象因子 	化学分析 電気化学的手法 化学分析	 A (株) (10 AP) 集積回収法・定量回収法 ACM 型腐食センサ ガラス電極 pH 計 ガーゼ法(JIS 法) ウェットキャント* が法(ISO 法) 	 血及、
環境因子	気象因子	化学分析 電気化学的手法 化学分析	Xiw With UX か 集積回収法・定量回収法 ACM 型腐食センサ ガラス電極 pH 計 ガーゼ法(JIS 法) ウェットキャント* が法(ISO 法) 試き取り法	血及、
環境因子	気象因子	化学分析 電気化学的手法 化学分析 電気化学的手法	A(素 e)(b)(X a) 集積回収法・定量回収法 ACM 型腐食センサ ガラス電極 pH 計 ガーゼ法(JIS 法) ウェットキャント* か法 (ISO 法) 拭き取り法 ACM 型腐食センサ	 血及、血及、降水量、風内、風及 大気汚染物質、雨水のpH 降雨時間、攻撃性ガス濃度、付着物量、 雨水のpH 雨水のpH 飛水のpH 飛水症塩粒子量 付着物量・組成 海塩付着量

表1 大気腐食の測定法・評価法(文献1を編集)

図7 種々の環境での腐食速度とACMセンサ出力の日平均電気量 (Q)との関係(文献1,3)

3.1.1.2 電気的・機械的モニタリング

試片に交流あるいは直流の定電流を流し、この腐食に伴う 電気抵抗の増加による電位差の変動を測定するのが、電位差 法である。電極に対象となる金属の薄膜を採用することによ り、その金属が均一に腐食した場合の挙動を実時間的に測定 できる。近年、測定回路の改良が進み、鉄や亜鉛の大気腐食 挙動をモニタリングした例も報告されている¹⁸。

一方、水晶振動子の共振周波数がその表面での重量変化 によって変化することを利用したQCM (Quartz Crystal Microbalance)は、1~10ng/cm²の検出感度をもち、暴露試験 片では検出できないような微小の腐食速度を測定できる。鉄 の腐食挙動におよぼす海塩および*RH*の影響¹⁹⁾を図9に示す。 図7中にQCMで示したデータは、本手法による測定による。

3.1.2 環境因子のモニタリング

ACM型腐食センサの出力(I)の大きさおよび経時変化が 降雨時と結露時とで異なることを利用して、降雨開始・終了 時刻および降雨時間の推定が行える¹⁶(図10⁶⁾)。

一方、*I*は海塩付着量(*Ws*)と湿度(*RH*)の関数で表わされ るので、*I*と*RH*とを実測することにより、海塩付着量を実時 間測定できる^{2,3)}。測定結果をもとに各地の海塩付着量の範囲 を表2^{2,3)}にまとめた。また、図11³⁾は、千葉市内にあるステン レス鋼製構造物(東京湾岸から約500m)の軒天パネルでの *Ws*の実測例である。図中破線はACM センサを交換した日で ある。海側(南西:SW)の部位(Site1)では、'95.4.23~4.24

図8 ケルビンプローブによる、大気環境中におけるステンレス鋼の 電位測定例 (304鋼:文献17)

図9 鉄の腐食挙動におよぼす海塩および*RH*の影響(QCMによる測定)(文献19をもとに描き直した)

にかけてWs=2.1~2.4g/m²に達した。気象庁監修の1996 年版 気象年鑑によると、'95.4.23には「千葉で最大瞬間風 速37.5m/s (SW)の突風が吹き、隣接する千葉マリンスタジ アムで予定されていたプロ野球が中止になった」という。こ の強風により多量の海塩が飛来し、Wsが1g/m²以上になっ たものと考えられる。ACMセンサと同時に暴露した22Cr-0.8Mo鋼試片が発銹したのは、Wsがこの鋼の臨界値(Ws=

図10 各暴露地における結露時間 (T_{dew})・乾燥時間 (T_{dry}) および降 雨時間 (T_{rain}) (文献6)

海塩付着量の対数、log Ws[g/m ²]					
	-3 -2 -1 0 1 2	_			
静岡県静岡市清水	百葉箱 屋根上 海面上50cm下向き				
沖縄県西原町	屋根上 南面90° (屋根玉)				
沖縄本島東海岸	屋根上				
沖縄本島西海岸	屋根上				
沖縄県宮古島	屋根上				
鹿児島県隼人町	屋根上				
茨城県つくば市	屋根上				
栃木県野木町 🗕	←− _ (~1998) 屋内 屋外(軒下)				
	(1999~) 屋内 屋外(軒下)				
海水散布	10-3 海水 10-2 海水 海水				
	5% NaC1水溶液				
		_			

0.5g/m^{2.3)})を越えた期間だけであった。このように、Wsの経時間変化を調べることによって、海塩が多く付着し、ステンレス鋼が発銹する可能性が大きい日を特定できる。

上述のACM センサに比べて、さらに高感度にWsを実時間 測定できるのがQCM法²⁰⁾ である。これは、QCMの共振周 波数変化が海塩付着量と湿度の関数で表わされることを利用 し、共振周波数変化と湿度とを実測値からWsを推定してい る(図12²⁰⁾)。

3.2 降雨時の大気腐食挙動

3.1.1.2および図7³に示したように、ACMセンサを用いて降 雨の影響を直接受けない環境での炭素鋼の腐食速度を推定で

図11 千葉市内にあるステンレス鋼製構造物(東京湾岸から約500m) の軒天パネルでのWsの実測例(文献3)

きるが、降雨時の大気腐食挙動を調べる手法がなかった。そこ で、人工降雨装置を開発し²¹⁾、降雨時の大気腐食挙動を調査し た。ACMセンサ出力や腐食速度は、雨の強さにはほとんど影 響されず (図13²¹⁾)、雨水の組成や電導度に依存する (図14²¹⁾)。

4 おわりに

局部腐食の発生条件や進展挙動の検討は、ある程度可能と なって来た。しかし、最適な材料選定のためにも、各腐食形 態の機構解明を含め、それらが『いつ、どこで、どのように』 発生・成長して行くかを推定できる手法の開発・検討が望 まれる。一方、大気腐食のような非没水系では困難とされた 電気化学的手法など多くの手法が、センサ構造の工夫などに よって、適用されるようになってきた。また、それらを駆使 して、水や付着物の役割やそれらを供給する環境因子の影響 などが解明されつつある。種々の環境因子の影響を把握する ことによって、実際に則した腐食挙動の推定が行えるように なることを期待する。

図13 ACMセンサ出力におよぼす模擬雨水 (Na₂SO₄水溶液)の濃度と雨の強さ (H)の影響 (文献21)

図14 炭素鋼の腐食速度におよぼす模擬雨水 (Na₂SO₄水溶液) の濃 度および電導度の影響 (文献21)

参考文献

- 1) 篠原正:ふぇらむ, 13 (2008), 798.
- 2) 篠原正, 元田慎一, 押川渡: 材料と環境, 54 (2005), 375.
- 3) 篠原正:ふぇらむ, 11 (2006), 215.
- 4) 篠原正:ふぇらむ, 17 (2012), 296.
- 5) 篠原正: 材料と環境, 63 (2014), 116.
- 6) 篠原正: 材料と環境, 64 (2015), 26.

- 7)中津美智代,野村光司,深谷祐一,篠原正:材料と環境, 56 (2007), 309.
- 8) 深谷祐一, 篠原正:第52回材料と環境討論会講演集, (2005), 403.
- 9) 崎谷美茶, 松橋透, 高橋明彦, 松橋亮: CAMP-ISIJ, 12 (2008), 609.
- (2008), 153.
- 天谷賢治,八鍬浩,早房敬祐,山本涼太郎,大津健史:第
 62回材料と環境討論会講演集,(2015),189.
- 注川茂男:第78・79回西山記念技術講座,鉄鋼材料の環 境強度とその評価,日本鉄鋼協会,(1981),247.
- 13) 篠原正,新谷嘉弘,辻川茂男:材料と環境,46 (1997), 695.
- 14) S.Tsujikawa, T.Shinohara and Wen Lichang : Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, ASTM STP1194, ed.by G.Cragnolino and N.Sridhar, ASTM, (1994)
- 15) 溝口太一朗:ステンレス鋼の耐食性に及ぼす合金元素の 影響と省資源化鋼の開発動向,日本鉄鋼協会,(2008),
 33.
- 16) A.Nishikata, I.Ichihara, Y.Hayashi and T.Tsuru : J.Electrochem.Soc., 144 (1997), 1244.
- 17) 三谷貴俊, 篠原正, 辻川茂男:第42回腐食防食討論会講 演集, (1995), 141.
- 18) 面田真孝, 原田宏紀, 河野崇史, 梶山浩志, 木村光男: 材 料と環境2014講演集, (2014), 149.
- 19) 押川渡, 糸村昌祐, 篠原正, 辻川茂男: 材料と環境, 51 (2002), 398.
- 20) 篠原正:材料試験技術, 42 (1997), 181.
- T.Dara, T.Shinohara and O.Umezawa : Zairyo-to-Kankyo, 66 (2017), 58.

(2017年6月5日受付)