

今振り返ってみて、行間にこめた思い、エピソード

ケイ酸塩系スラグの表面張力

Surface Tension of Silicate Slags

助永壮平^{東北大学} 多元物質科学研究所 Sohei Sukenaga 助教

し はじめに

この度、「私の論文」に寄稿する貴重な機会をいただいた。 今回紹介する論文¹¹では、酸化物系融体の表面張力の理解方 法を提案しているものの、著者らの表面張力の考え方がこの 論文中で完全に実証できているわけではない。したがって、 高温融体の表面張力の理解を目指した研究の途中過程を紹介 しているとご理解いただければ幸いである。論文中に記載で きなかった執筆に至った動機、酸化物系融体の表面張力の考 え方、今後残された課題に焦点を絞って解説する。

(2) 本論文を書いた動機

溶融ケイ酸塩の物性は、自然現象の理解やガラス製造プロ セス、高温冶金プロセス改善のための重要な基礎的情報とし て古くから認知されており、著者が調べた限りでは1880年 代からすでに試薬を用いて合成したケイ酸塩についての研究 が行われていることが記されている²⁰。その後、ケイ酸塩融 体の熱力学的な性質、粘度や密度等のバルク物性の研究が活 発に行われ、分光学的手法(X線回折、赤外線分光など)と融 合し、融体物性を支配している融体やガラスの構造が推測さ れるようになった。一方で、溶融ケイ酸塩の界面物性として 重要な表面張力については、上述のバルク物性よりも測定例 が少ない。加えて、溶融ケイ酸塩の表面構造の解析が容易で ないため、未だに構造を軸にした物性整理が十分になされて いないのが現状である。著者らは、東北大学 植田滋先生が座 長を務められた日本鉄鋼協会の「低炭素高炉実現を目指した 固気液3相の移動現象最適化研究会(2011年~2013年)」に 参加させていただく機会があり、高炉の通気性に大きく影響 する³³ 溶融スラグの表面張力について調査することを課題と していただいた。溶融ケイ酸塩の表面張力について不勉強で あった著者は、研究会開始当時は海外留学中であり、時間的 にも恵まれていたため、ケイ酸塩の表面張力に関する過去の 文献を集めて、表面張力の測定技術や理解がどこまで進んで いるかを明確化することから研究をスタートさせた。高炉系 で重要な CaO-SiO₂系、CaO-SiO₂-Al₂O₃系融体においては高 精度な測定値が多数報告されていたが、表面張力の化学組成 に対する変化の発現メカニズムについて詳細に考察している 報告は、著者らの確認した限り見当たらなかった。したがっ て、本論文を執筆する動機、すなわち本研究のモチベーショ ンは、高炉系スラグとして重要な CaO-SiO₂-Al₂O₃-MgO 系融 体の表面張力の組成依存性発現メカニズムについて考察を行 うことであった。

A 論文で提案したケイ酸塩融体の 表面構造の考え方

表面張力の測定値は、同一の組成の試料においても測定方 法や測定者により20-50%の相違があることが報告されてい る⁴。そのため、同一の測定者の報告値を比較できると組成 依存性の傾向が理解しやすい。向井楠宏先生(元九州工業大 学)の研究グループは、CaO-SiO₂ Al₂O₃系の幅広い組成範囲 を網羅した表面張力測定値を報告されており⁵⁾、著者らは向 井先生のグループの報告をもとに表面張力の組成依存性の 理解を試みることとした。CaO-SiO₂ (CS)の二元系の表面張 力をCaO濃度に対して整理すると、CaO濃度の増加に伴い

*[今回の対象論文] 助永壮平,肥後智幸,柴田浩幸,齊藤敬高,中島邦彦「Effect of CaO/SiO₂ Ratio on Surface Tension of CaO-SiO₂-Al₂O₃-MgO Melts」, ISIJ International, Vol.55 (2015), No.6, pp.1299~1304 (第27回澤村論文賞受賞)

表面張力が上昇していた。ここでなぜCaOの添加により、表 面張力が上昇するのかという疑問がわいた。液体の表面張力 は、表面近傍の構造が支配している⁶⁾と考えることができる。 ケイ酸塩のような酸化物融体の場合には表面が酸素イオンに 覆われているとする説が有力である⁷⁾。本研究でもそのよう に仮定すると、酸素イオン近傍の化学構造がCaOの添加によ りどのように変化するかを明らかにできれば、表面張力の変 化を理解できると考えた。金属製精錬分野の教科書を参照す ると、SiO₂にCaOを添加すると、Si-O-Siで表される架橋酸素 (bridging oxygen, BO)の一部がCaイオンにより切断され、 Si-O-Caで表される非架橋酸素 (non-bridging oxygen, NBO) が生成するという記述があるのみであり、この非架橋酸素の 導入がなぜ表面張力を変化させるのかを理解することはで きなかった。この課題に取り組みはじめた当時、著者は、酸 化物ガラス中の酸素の局所構造(配位構造など)について研 究を進めており、酸素イオンの局所構造について、無機化学 分野やガラス科学分野、および地球化学分野の研究者と話す 機会があった。異分野の研究者との会話の中で、架橋酸素が 二つのSi原子と結合する陽イオン2配位構造をとるのに対し て、非架橋酸素は一つのSiと3~4つのCa原子と結合してい ることを学ぶこと(すなわち陽イオン4~5配位構造をとる⁸⁾) ができた (Fig.1参照)。異分野の研究者とディスカッション することが重要であることを実感し、改めて融体中の酸素の 配位構造に着目してみると、架橋酸素と非架橋酸素ではバル ク中において化学結合を満たすために必要な結合相手(原子) の数が全く異なることがわかった。 大阪大学 田中敏宏先生 の表現⁹を引用すると、液体の表面張力は、表面にある原子 の結合エネルギーではなく、結合すべき相手を失った原子が もつ単位面積あたりの (バルクに比べて) 過剰なエネルギー に相当する。したがって、CaO添加による表面張力の上昇 は、配位数の高い(表面で結合相手を失いやすい)非架橋酸 素が導入されたためと考えることができる(Fig.2 参照)。こ

こまで研究が進んだ段階で明らかになったのは、バルク中で の酸素イオンの配位構造を詳細に知ることができれば、表面 張力の考察に役立ちそうだということである。

次に、CaO-SiO₂にAl₂O₃を添加した場合の表面張力につ いて考えた。CaO-SiO2系のSiの一部をAlで置換すると架橋 酸素Si-O-Siの一部がSi-O-Alに置き換わる。バルク中におい て、この架橋酸素は約-0.25¹⁰の負の電荷をもつため、Caイ オンから電荷を供給される必要があり、Si, AlおよびCaの結 合した配位数の高い架橋酸素 (3配位以上) となる (Fig.1参 照)。したがって、NBO濃度が同じCaO-SiO₂-Al₂O₃ (CAS) 系 融体においては、Al₂O₃を含む系の方が、表面張力が高くな る (Fig.2参照)。したがって、SiO₂以外の network former を 含む組成では、酸素の陽イオン配位数についての知見が表面 張力を考える上で特に重要になると考えられる。高炉系スラ グに含まれる第4成分であるMgOは、CaOと同じアルカリ 土類金属陽イオンであり、CaOと同様に表面張力を上昇させ ると予想された。MgOを含む4成分系については文献値が 少なかったため、8mol%のMgOを含有したCaO-SiO₂-Al₂O₃-MgO (CASM) 系融体の表面張力を九州大学 中島邦彦先生 の研究グループにて高精度に測定していただいた。Fig.2に 測定した CASM 系の表面張力を NBO 濃度に対してプロッ トした。CASM系の表面張力はCAS系の近似直線の延長線 上に位置しており、今回調査を行った組成範囲では、CaOと MgOの表面張力への寄与の違いは明確に現れなかった。以 上の述べてきたように、本論文で最も述べたかったことは、 今回対象とした CASM 系融体においては、酸素イオンの配位 構造が表面張力と密接に関係しているということである。

(4) まとめと残された課題

本論文では、高炉内滴下帯で生成する CASM 系融体の表面 張力について扱った。一方で、高炉内部では、アルカリ金属酸

Fig.1 Schematic illustrations of the local structures for three kinds of oxygen atoms in bulk and at the melt surface. These illustrations are redrawn from the reference ¹).

Fig.2 Relationship between the surface tension (at 1823 K) of the silicate slags and concentration of non-bridging oxygen (NBO) . NBO concentration (%) is estimated from nominal composition of the slags¹. Surface tension data reported by Mukai and Ishikawa⁵ are comparable with the authors' data when the chemical composition is close, as shown in the figure. Allows in the figure shows the tendency of the change in surface tension by contributions of NBOs, Si-O-Al, and alkali cations(i.e., Na and K) CS: CaO-SiO₂, CAS: CaO-SiO₂-Al₂O₃ (Al₂O₃ concentration = 10-13 mol%) CASM: CaO-SiO₂-Al₂O₃-MgO (Al₂O₃ concentration = 12 mol%, MgO concentration = 8 mol%), CASL : 32.2CaO-45.1SiO₂-11.9Al₂O₃-10.8Li₂O (mol%), CASK : 31.6CaO-44.7SiO₂-12.6Al2O3-10.8Na₂O (mol%) .

化物の蒸気が循環していることが高炉解体調査から明らかに されており、アルカリ金属酸化物のケイ酸塩スラグへの溶解 や吸着が溶融スラグの表面張力に影響する可能性がある¹¹⁾。 本原稿では、著者らが測定したCaO-SiO₂-Al₂O₃-R₂O (R=Li, Na, or K) 系の表面張力¹²⁾をNBO濃度に対してCASM系と 同じ図内にプロットした (Fig.2参照)。図より、Li₂Oを含む 系はCASやCASM系と同じ直線状にプロットされており、 今回の酸素イオンの配位構造に着目した考え方が適用可能 であることわかる。一方で、Na₂OやK₂Oを含む系では、CAS やCASM系のNBO濃度依存性を示した直線から大きく負の 方向に外れた位置にプロットされた。Na₂OやK₂Oはケイ酸 塩の表面張力を低下させる表面活性成分であると古くから考 えられているが、その詳細なメカニズムは不明である。著者 らは、CaO-SiO₂-Al₂O₃-R₂O (R=Li, Na, or K)系ガラス中の 酸素イオンの局所構造をNMR法により解析し、NaやKイオ ンがSi-O-Siを切断してNBOを生成する働きよりもむしろSi-O-Alに配位して、電荷補償陽イオンとして挙動しやすいこと を報告している^{13,14)}。Na₂OやK₂O添加による表面張力の低 下は、NaやKイオンにより電荷補償された架橋酸素Si-O-Al が融体の表面でもバルク中に近い配位構造を維持できる可能 性を示している。この点について解明するには、CaOを含ま ないアルカリケイ酸塩やアルミノケイ酸塩融体について、表 面張力データを蓄積するとともに、実験的手法または計算科 学的手法により、ケイ酸塩融体の表面構造を解明することが 必要と考えられる。

参考文献

- 1) S.Sukenaga, T.Higo, H.Shibata, N.Saito and K.Nakashima : ISIJ Int., 55 (2015), 1299.
- 2) H.B.Milner: Nature, 200 (1963), 1163.
- 3) 大楠洋, 佐々豊, 富田幸雄, 田中勝博, 長谷川守弘: 鉄と 鋼, 78 (1992), 1164.
- 4) L.R.Barret and A.G.Thomas : J. Soc. Glass Technol., 43 (1959), 179T.
- 5) 向井楠宏, 石川友美:日本金属学会誌, 45 (1981), 147.
- T.Tanaka, K.Hack and S.Hara : MRS Bulletin, 24 (1999), 45.
- D.T.Livey and P.Murray: J. Am. Ceram. Soc., 39 (1956), 363.
- P.Florian, K.E.Vermillion, P.J.Grandinetti, I.Farnan, F.Millot and J.F.Stebbins : J. Am. Chem. Soc., 118 (1996), 3493.
- 9)田中敏宏:ふぇらむ,8(2003),80.
- J.F.Stebbins, J.Wu and L.Thompson : Chem. Geol., 346 (2013), 34.
- 11) 児玉惟孝, 彼島秀雄, 高橋良輔: 鉄と鋼, 53 (1967), 260.
- 12) S.Sukenaga, S.Haruki, Y.Nomoto, N.Saito and K.Nakashima : ISIJ Int., 51 (2011), 1285.
- 13) S.Sukenaga, K.Kanehashi, H.Shibata, N.Saito and K.Nakashima : Metall. Mater. Trans. B, 47B (2016), 2177.
- 14) S.Sukenaga, P.Florian, K.Kanehashi, H.Shibata, N.Saito, K.Nakashima and D.Massiot : J. Phys. Chem. Lett., 8 (2017), 2274.

(2017年6月9日受付)