

先端解析および計算材料科学を用いた 加工・再結晶に関する最近の研究と将来展望

Recent Progress and Future Perspective of Research on Deformation and Recrystallization in Steel Exploiting Cutting-edge Analytical Technology and Computational Material Science

> 潮田浩作 Kohsaku Ushioda

日鉄住金総研(株) シニアアドバイザー 金沢大学 客員教授 大阪大学 特任教授 物質・材料研究機構 NIMS特別研究員

」緒言

第219・220回西山記念技術講座「材料設計を先導する物 理解析技術・計算科学」においては、最近の物理解析技術や 計算材料科学の進歩を俯瞰し、最先端の電子顕微鏡や量子線 を用いた解析、および第一原理計算やPF (Phase Field) 法な どの計算材料科学が紹介され、さらにこれらを融合した新し い材料設計技術の方向性が議論された¹⁾。筆者はそこにおい て、鋼材の一貫プロセスにおける組織や集合組織の発達、お よび特性・表面品位の評価技術について、EBSD (Electron Back Scattering Diffraction)の進歩を中心に最近の技術を紹 介し、将来への期待について述べた。本報告では、一貫プロ セスの中でも特に加工・再結晶と集合組織形成プロセスに焦 点を当て、直近の物理解析技術や計算材料科学の進展を利用 した研究例を紹介し将来を展望したい。

加工・再結晶は、組織微細化や集合組織制御と密接に関係 するため、優れた特性と品質を有する高付加価値な鋼材を製 造する上で、凝固、相変態や析出と並びきわめて重要な冶金 現象である。すなわち、加工・再結晶は、強度と加工性や靭 性との両立、磁気特性の向上、ならびに表面品位の確保の上 で、工業的にもきわめて重要である。

組織を微細化するための基本コンセプトはTMCP (Thermo-Mechanical Controlled Process) であり、工業的には制御圧延 と制御冷却により①再結晶や変態の核生成頻度を増加させ、 かつ②成長を抑制させることがポイントとなる。集合組織を 制御するには、核配向選択成長説に立脚すれば、特定の結晶 方位を有する再結晶粒の核生成サイトの提供や核の方位選択 的成長が可能な環境の提供が基本となる。これらに共通して 言えることは、不均一加工組織の制御が最も基本となる点で あり、再結晶のみならず相変態においても核の生成や成長の 観点から加工組織の不均一性はきわめて重要である。

学術的にも、加工・再結晶は未開拓の所が未だ多くあるよ うに思える。先ず、塑性変形後の不均一加工組織は複雑であ り、その形成メカニズムの理解や予測技術は不十分である。 また、再結晶機構についても、静的再結晶と動的再結晶、あ るいは連続再結晶と不連続再結晶現象、さらには不連続再結 晶にも高エネルギーブロック説と低エネルギーブロック説 があり複雑であり、正確な理解が十分進んでいるとは言えな い。すなわち、不均一加工組織からのサブグレインの成長と 再結晶核の形成、さらには核の成長、すなわち再結晶粒/未 再結晶粒界面の移動と界面性格、および界面移動に及ぼす固 溶原子や析出物の影響などは必ずしも十分理解されていな い。また、集合組織の形成機構についても核配向説と配向成 長説の両説があるが、統一的な理解には至っていないと思わ れる。再結晶後の粒成長にともなう集合組織の変化について も、粒界エネルギーや粒界易動度の粒界性格依存性の全貌が 不明なため、本質的には課題が残っていると考えられる。

本報告では、進歩の著しい物理解析技術や計算材料科学を 利用した本分野の最近の研究例を紹介し、今後の取り組むべ き方向性について将来を展望する。

2.1 不均一加工組織

多結晶体の圧延後の加工組織はきわめて不均一である。す なわち、結晶粒により変形が異なるのに加え、例えば結晶粒界 近傍、結晶粒内のせん断帯や遷移帯および双晶境界近傍、さら には硬質第二相近傍などに代表される場所においては、局所 的に変形が不均一となる²⁰。加工組織は、注目する結晶粒の方 位と形態、およびそれを取り囲む隣接粒による拘束や硬質第 二相の存在の影響を受けるため、上記のように複雑となる。再 結晶は加工組織の中でも、一般的に不均一性の高い高ひずみ 領域から核生成する。また、加工された母相からの相変態にお いても、新相はこのような不均一領域から優先的に形成され る。したがって、加工組織の不均一性はきわめて重要となる。

結晶粒界近傍における圧延組織の不均一性について、阿 部らが先駆的な研究を行った³⁾。また、彼らはND//<111>再 結晶粒の優先核生成に初期結晶粒界が重要な役割を果たす ことも示した。ここで、ND(Normal Direction)は板面法線 を示す。粒界近傍では歪の連続性を保つために多重すべりが 生じ、転位密度が局所的に高くなり硬さが増す場合が一般 的に多い。しかし、隣接方位関係によっては軟らかくなる場 合もあることが指摘されている³⁾。EBSDを利用した最近の Ti-IF (Interstitial Free) 鋼を用いた研究⁴⁾によれば、図1に 示すように初期結晶粒界近傍での不均一性は、①平滑な粒 界、②不規則に凹凸のある粒界、③微細粒をともなう粒界、 の3種類に分類された。解析対象とした84の粒界について結 晶方位情報を反映したAsB (Angle Selective Backscattered Electron)像も考慮し統計的な解析を行った結果、粒界近傍 の不均一性はND//<111>方位粒とRD//<011>方位粒の塑性 変形の差に基本的に起因すると推察されている。ここで、RD (Rolling Direction)は圧延方向である。しかし、上記結晶方 位に至るまでの結晶回転を含む定量的な評価までには至って いない。また、粒界における微細粒の存在は特筆されるべき 新知見であり、粒界近傍での変形の集中と動的回復が関与し

ていることが推察されている。

結晶粒内においても、結晶方位は場所的に変化する。その 様子は、図1示した結晶方位マップの変化からも認められる。 その中でも、RD//<011>方位粒は比較的方位の揺らぎが小 さい。これは、再結晶粒の核生成がRD//<011>方位粒ではき わめて困難であることを示唆する。一方、ND//<111>方位粒 は方位揺らぎが大きく、再結晶粒は容易に形成される。また、 結晶粒内には周囲と大きな方位差を持つせん断帯が形成され る場合がある⁵⁷⁷。(111)[11-2]Fe-3mass%Si(以降、mass% を省略)単結晶を圧延するとせん断帯が形成されることは周 知であるが、圧下率の増加にともない既存のせん断帯は圧延 面に平行に傾こうとする。また、圧延方向から約35°の角度 を持った新たなせん断帯が形成される⁷⁷。冷間圧延素材にC が固溶状態で存在すると、{111}<112>結晶粒に明確なせん 断帯が形成される⁶⁰。図2から明らかなように、せん断帯に

図2 Fe-0.02Cを700 ℃から水冷した素材を70%冷間圧延後に観察 されたせん断帯のTEM像⁶⁾とその模式図。(a)明視野像、(b) 暗視野像(回折スポット(b))、(c)暗視野像(回折スポット(c))

図1 Ti-IF 鋼を70%冷間圧延した後の結晶粒界近傍における変形の不均一性を示す EBSD 方位マップとAsB (\$⁴)。

おいてはせん断変形が局所的に集中しており、せん断帯内部 では {110} <001>まで方位回転した領域が局所的に存在す る⁵⁷⁾。また、 {110} <001>再結晶粒がせん断帯から核生成す ることも報告されている^{5,7)}。さらに、動的ひずみ時効条件下 で圧延すると、せん断帯の形成が促進されることも知られて いる^{5,8)}。これは、動的ひずみ時効条件下で変形すると歪速度 感受性指数 (m) が負となるため、変形の局在化がさらに進 行するためと考えられている^{8,9)}。

初期方位が {100} <001>の結晶粒においては、圧延方向と 平行に筋状組織、すなわち遷移帯が形成されることが知られ ている¹⁰⁰。これは、圧延にともないND//<001>軸回りに左右 に45°方位回転した {100} <011>方位を持つ領域が形成され、 その間に初期方位を維持した領域が残存するためと考えられ ている。このような遷移帯は、{100} <001>再結晶粒の核生成 サイトとして重要な役割を果たす¹⁰。

Fe-3Si鋼を冷間圧延するとC量の増加と共に変形双晶の密 度が増大し、変形双晶は [411] <148>方位粒の核生成サイ トとして重要な役割を果たすことが報告されている¹¹⁾。

硬質第二相周辺はきわめて複雑な変形をする。 先ず、Fe-17Cr鋼を二相域から水冷しフェライト(α)とマルテンサイ ト(α')からなる組織を得た¹²⁾。比較のためにα'の焼戻し 処理も加えた。これらを、75%冷間圧延すると、図3に示す ように硬質第二相(α')の周辺にひずみが集中するが、歪の 集中度はα'と母相(α)とのビッカース硬さ(Hv)の比が大 きいほど増す¹²⁾。すなわち、硬さ比が大きいと図3(a)のよ うにα'は殆ど変形することができずα'の周囲に著しく歪 みが集中する。一方、図3(b)に示したように550℃で焼戻 し処理をすると焼戻しα'は変形が相対的に容易となるので、 界面への歪の集中度は低下する。硬質第二相界面は、ランダ ムな方位を有する再結晶粒の核生成サイトとして働き、さら に RD//<011>コロニー組織を分断する結果、Fe-17Cr鋼の本 質的な課題であるリジングの発生を防止し表面品位を改善す ることが知られている¹²⁾。

粒界近傍、せん断帯や硬質第二相近傍のように、変形がき わめて複雑で微細な構造を有する領域の結晶方位解析には、 通常の反射EBSDでは限界がある。透過EBSD解析やTEM による自動方位マッピング解析¹³⁾が提案されている。後者は、 例えばスポットサイズ5nm、ステップサイズ10nmで電子線を 走査させ自動方位解析することが可能となるので、微細構造 を有する領域の詳細な結晶方位解析に適すると考えられる。

2.2 EBSDを用いたオーステナイト (γ) 相の再構築とγの加 工・再結晶

組織制御のためには、γにおける加工・再結晶の正確な把 握が重要となる。しかしながら、γからαへ相変態する鋼にお いては、高温でのγの加工・再結晶を直接見ることは困難で あった。そこで、γを凍結して得られる a'のEBSD データか らγ相を再構築する技術¹⁴⁾を利用して、γの加工・再結晶や 結晶方位解析が可能となった。その一例を、図4に示す¹⁵⁾。V が無添加の0.55C-1.5Si-0.7Mn-0.7Cr鋼と、それに0.1Vを添加 した鋼を1200℃に加熱後、γ相の800℃まで急冷しその温度 で一段目の圧縮加工 (歪 ε = 0.3) を施し任意の時間保定した 後、同じ温度で二段目の圧縮加工 (歪 ε = 0.3) を行った。一 段目の加工前、加工直後および保定後に水冷して、α'組織を 凍結し観察した。縦軸は、保定中の軟化率X (= $(\sigma_{e} - \sigma_{v2})$ / $(\sigma_{\varepsilon} - \sigma_{v1}))$ の時間変化を示す。ここで、 σ_{v1} , σ_{v2} および σ_{ε} は、一段加工、二段加工時の降伏応力、および一段加工時の 最大流動応力である。加工前の初期組織は約100 µmの等軸 粒から成り、焼鈍双晶が明瞭に見られる (図4 (a))。 加工直 後は、圧縮方向に扁平した不均一な加工γ組織が認められる (図4(b))。V無添加鋼は加工後直ぐにγ相の軟化が始まり、 800 ℃-10 sの保定で γ 粒界や粒内の焼鈍双晶やせん断帯と

図3 0.07C-17Cr鋼の75%冷間圧延後のEBSD方位マップ¹²⁾。(a) 二相域1050 ℃より水冷まま。 Hv (*a*) = 205、Hv (*a* ') = 420、(b) その後550℃ -1h 焼戻し。Hv (*a*) = 180、Hv (*a* ') = 295

516

図4 0.55C鋼(V無添加、0.1V)を800 ℃(γ)で熱間圧縮変形(ε =0.3)した後の静的軟化挙動、およびα'のEBSDデータから 再構築したγ相の方位マップ(CD)およびその逆極点図¹⁵⁾。 圧縮軸(CD)は左右方向

思われるところから再結晶粒が核生成し(図4(c))、 10^3 sの 保定後には再結晶が完了している(図4(d))。一方、0.1V鋼 では著しく軟化が抑制され、 10^4 sまで保定しても γ の再結晶 は抑制され初期段階に留まっている(図4(e))。また、未再結 晶 γ 相はCD//<011>の圧縮集合組織を有するが、再結晶した γ 相の集合組織は弱くなることも明らかである。ここで、CD (compression direction)は圧縮方向を示す。本手法により、 γ 相の再結晶研究が一層進むことが期待される。また、Vの回 復・再結晶抑制機構は、アトムプローブ(AP: Atom Probe) でも確認できないような微細なV-Cクラスターに起因すると 推察されるが、その実態は必ずしも明確ではない¹⁶⁾。マイク ロアロイの正確な効果については、今後の課題と考える。

2.3 再結晶/未再結晶界面への溶質元素の偏析と界面移動

核生成した再結晶粒の移動は、界面への合金元素の偏析に 起因するソリュートドラッグ効果やピニング粒子によるピン 止め効果により抑制されることが知られている。しかし、移 動界面の実態を把握することは困難であった。最近、B添加 Ti-IF鋼を例に、再結晶/未再結晶粒の界面におけるAP解析 が適用された¹⁷⁾。Ti-IF鋼においては、Ti単独よりTiとBが 共存すると著しく再結晶が抑制されることが報告されてい る¹⁸⁾。すなわち、両元素の複合添加により核生成までのイン キュベーション時間が長くなると同時に、再結晶核が未再結 晶領域に成長(核成長)する速度も低下する¹⁸⁾。既に述べた ように、回復から再結晶核生成段階におけるマイクロアロイ ングの影響については現状では解析手法に課題が残るので、 ここでは核成長に及ぼすTiとBの影響に焦点を絞る。3DAP 観察に用いた材料は、過剰Ti量をほぼ0.03%と一定とし、B 量を無添加から14 massppmまで変化させたTi-IF鋼である。 再結晶分率が約5%の材料において、大角の再結晶/未再結 晶粒の界面が解析領域に確実に存在することを、EBSD お よびFIB法により確認した。観察に用いた0.0018C-0.051Ti-0.0014B鋼の再結晶粒と未再結晶粒の界面には、TiとBの両 方の元素の偏析が見られ、Ti-B系の析出物は確認されなかっ た。また、0.0023C-0.052Ti-.0001B鋼では、界面へのTiの偏 析は認められたが、0.0014B材と比較してTiの偏析量が少な いことを確認した。Bの偏析量の増加と共にTiの偏析量が増 していることが明確に認められ、BとTiの共偏析が示唆され た。Tiは、単独添加の場合よりBと共存することにより偏 析量が増し、ソリュートドラッグ効果が強くなることにより 界面の移動速度が著しく低下することが初めて明らかとなっ た。一方では、α-Fe (111) Σ3 [11 0] 対称傾角粒界を対象 とした第一原理計算により、結晶粒界においてはB原子とTi 原子の間に引力の相互作用が生じ、両者が共偏析する傾向が 明らかとなった¹⁸⁾。また、このような引力相互作用は、粒界 においてB原子とTi原子が近接した際、Ti原子のボロノイ 体積が増加しB原子のボロノイ体積が減少することに起因す ると推察されている¹⁸⁾。

2.4 析出、再結晶およびα→γ逆変態の競合現象を考慮した 高強度鋼板の組織制御

鋼材の高強度化の進展は著しく、その取り組みは今後も激 化すると予想される。したがって、高強度鋼板の組織と特性 の制御は、今後ますます重要となる。ここでは、冷間圧延・ 焼鈍プロセスにより製造される高強度鋼板を対象とする。こ のようなプロセスにおいては、αの再結晶とαからγへの逆 変態との競合に加えて、これに析出が重畳した三者の競合現 象を理解することが必要となる。

例えば、Ogawaら¹⁹は、0.1C-0.02Si-2.0Mnのベイナイト組 織から成る鋼を素材に67%の冷間圧延とそれに続く焼鈍を 行い、組織の発達を基礎的に調査した。二相域の750 ℃にお ける等温焼鈍時の保定時間に伴う再結晶 α (KAM (Kernel Average Misorientation) <1°)分率の変化を図5 (a)示す。 α の再結晶は時間と共に進行するが100 sから1000 s付近で 一旦再結晶の進行が停滞する。図5 (b) および (c) に示した EBSDのIQ (Image Quality) マップから明らかなように、逆 変態 γ は α のサブグレインや再結晶 α /未再結晶 α の界面に 形成される。その結果、 α の再結晶の進行が γ の存在により 抑制されることを明らかとした。その後、時間の経過ととも に γ はOstwald成長し、 α の再結晶は再び進行し再結晶が完 了する。最終的には、再結晶 α と γ (焼入れると α ')から成 る二相組織が得られることになる。

このような鋼に0.02Nbや0.05Nbを添加すると、組織形 成は大きな影響を受ける²⁰⁾。焼鈍中におそらくNb-Cクラス ターが先行して形成され、図6に示すように α の回復・再結 晶は著しく抑制される。その結果、 α は未再結晶のままで γ へ逆変態することになる。このように形成された微細 γ と Nb-Cクラスターとの相乗効果により、 α の再結晶はさらに 抑制され、最終的には微細な再結晶 α 組織が形成される。ま た、Nb添加により上記したように α の再結晶が抑制される ため、逆変態 γ の核生成頻度が増し γ の変態率も高くなる。 このように、Nb添加により微細再結晶 α と高分率の γ から 成る組織が得られることが説明された²⁰⁾。

2.5 X線ラインプロファイル解析による加工・回復・再結晶 時の転位挙動の評価

X線ラインプロファイル解析から、転位の性格ごとの転位 密度や転位配列などが評価できる²¹⁾。ここでは、本手法を、 99.8%の強圧下冷間圧延した純Fe、F-0.3Si合金およびFe-0.3Al合金へ応用した例を示す²²⁾。

強圧下の冷間圧延を施すと、通常の圧下率の場合と異なり

図5 (a) 0.1C-0.02Si-2.0Mn 鋼70%冷間圧延板の750℃等温焼鈍 時のα再結晶(KAM<1°領域)の時間変化¹⁹⁾。再結晶停滞領域 (100s)における(b) IQマップ、(c) 逆変態γ

αファイバー組織が再結晶し、[100] <012>や [411] <148> 集合組織が形成される²²⁾。また、純FeにSiを添加すると冷間 圧延ままの状態において、刃状転位密度が相対的に増加する ことがX線ラインプロファイル解析から明らかとなった。こ れは、Siが交差すべりを抑制するためと推察されている。図 7に示したように、Fe-0.3Si合金では、低温(200℃)の回復段 階から刃状転位密度が低下する。これは原子空孔を活用した 刃状転位の上昇運動による合体消滅を示唆すると推察されて いる。また、400 ℃以上においては、らせん転位密度が著し く低下して再結晶が進行する。一方、純Feではらせん転位密 度の低下はさらに低温の300 ℃程度から生じることが明らか

図6 750℃等温焼鈍時の α 再結晶 (KAM<1°領域)の進行に及ぼす Nb添加の影響²⁰⁾。

図7 Fe-0.3Si鋼の99.8%冷間圧延板の回復・再結晶焼鈍時の転位 密度変化 (X線ラインプロファイル解析)²²⁾。R_s:再結晶開始、 R_f:再結晶完了

となった。TEM観察による転位組織の直接的評価の結果、サ ブグレインの形成および再結晶の開始は純Feでは速いこと が確認された。したがって、Siの添加は、圧延時に転位が交 差すべりをする頻度を低下させることに加え、回復・再結晶 時において転位や原子空孔とSiとが相互作用し、上述したよ うに回復やサブグレインの形成を抑制するものと推察され ている。また、Alの影響はSiより小さいことも明らかとなっ た。このような固溶元素の影響については、3.3で述べる第一 原理計算と融合させた新たな進展が、今後期待される。

3 先端計算材料科学を用いた 加工・再結晶の研究例

3.1 結晶塑性解析による不均一加工組織の予測

多結晶体における塑性変形時の加工組織や集合組織の発 達を予測することを目的に、従来から多くの試みがなされ てきた。しかし、これらは、隣接する結晶粒や硬質第二相 の存在による三次元的な変形拘束の影響、あるいは固溶元 素によるすべり挙動への影響などを受けるため、解析は容 易ではない。最近では、結晶塑性(CP: Crystal Plasticity) -FEM (Finite Element Method)²³⁾ やCP-FFT (Fast Fourier Transform)²⁴⁾ などの手法が変形の予測に活用されている。 特に後者は、計算が非常に効率的となる特徴がある。

低炭素鋼における多結晶γ相の圧縮変形シミュレーション をCP-FFTで行ったYamanaka²⁵⁾による研究例を紹介する。 代表体積要素の大きさは12.8×12.8×12.8 μ m³であり、結晶 方位がランダムな結晶粒数200からなる三次元的な初期γ組 織をPF (Phase Field) 法により先ず作成した。図8は、公称 歪0.2まで平面歪圧縮変形した後の蓄積エネルギー分布(図 8 (a))と結晶方位差分布(図8 (b))である。図8 (a) におい て矢印A~Cで示したように、特定の粒界近傍で蓄積エネル ギーが局所的に高いことが明らかである。また、図8 (b) に 示したように結晶粒内でも大きな結晶方位差を示す場所が得 られている。三次元不均一加工組織の予測という点において 重要な結果であり、多くの応用が期待される。一方では、す べり変形の高精度化、大歪変形への展開や実験による計算結 果の検証が今後必要と思われる。特に、加工組織の不均一性 をサブミクロンオーダーの空間分解能で非破壊的に実験的に 検証することは容易ではないが、ペンシルビームX線を用い た3DXRDによる局所領域の転位密度や結晶方位解析に期待 したい^{26,27}。

3.2 加工と再結晶・相変態との連成解析

不均一加工組織は、再結晶や相変態の核生成サイトとして 重要な役割を果たすので、計算で予測された不均一加工組織 をベースに再結晶や相変態モデルと連成させた、一貫での組 織や集合組織の発達を予測する試みがなされている^{23, 25, 28, 29)}。 また、三次元解析が一貫プロセスにおける連成解析において も可能となっていることは特筆される²⁵⁾。

例えば、Takaki ら²⁸⁾は、fcc金属の静的再結晶についてCP-FEMとPF法とを連成させた二次元モデルを報告している。 Yamanakaら^{25,29)}も、低炭素鋼の熱間圧延時におけるγの加 工に関するCP-FFTモデルと加工γからのα変態に関する PFモデルとを連成させた組織予測モデルを報告している。 PF法における核生成の扱いには自由度があり、上記の両研 究においては核生成が一定の蓄積エネルギーを越えたとこ ろで優先的に生じる、言い換えると核を置くことを仮定して いる。一方、諏訪ら³⁰⁾は、一次再結晶の核生成はサブグレイ ンの異常粒成長であると仮定し、90%冷間圧延した純Feの EBSDデータを初期組織としてサブグレインを構築し、サブ グレインの異常粒成長から観た一次再結晶の PFシミュレー ションを行った(図9)。実験との比較検討も行い、核生成・

図8 低炭素鋼をγ域で公称歪0.2まで平面歪圧縮加工した後の(a) 蓄積エネルギー と(b) ミスオリエンテーションの3次元分布²⁵⁾。

図9 (a) 純Fe 90%冷間圧延まま材のEBSDデータ(0.05 μmピッチ)から構築した サブグレイン組織および (b) PF法でシミュレートした再結晶初期段階の組織³⁰。 結晶方位はND方位を色づけ

成長型の再結晶機構やND//<111>再結晶集合組織の発達 に関しても実験結果を定性的に再現することを確認してい る³⁰⁾。今後は、解析精度の向上が必要であり、例えば粒界エ ネルギーや界面移動度の粒界性格依存性に関する信頼できる データベースは重要な課題の一つである。また、相変態のシ ミュレーションにおいては、γからαへの変態時のバリアン ト選択則が重要な役割を演じると考えられる。バリアント選 択則に関しては、例えばFuruharaら³¹⁾によるベイナイト変 態時のいくつかのルールが既に提案されている。また、最近 では、α変態における二重KS(Kurdjumov-Sachs)関係の充 足率におよぼすαエンブリオの配置やγ集合組織の影響が検 討されている³²⁾。今後は、バリアント選択に関してさらに理 解が深まり、変態組織や変態集合組織の予測精度が向上する ことが期待される。凝固も含めた一貫プロセスにおける冶金 現象の連成解析は、将来研究の一つの方向と考える。

3.3 転位と溶質元素との相互作用に関する第一原理計算・ 分子動力学

不均一加工組織の発達を理解する上では、変形初期の転位 のすべり運動に及ぼす溶質元素の影響に加えて、加工量が増 加した時の転位の集団運動に及ぼす溶質元素の影響を理解す ることはきわめて重要である。

Wakedaら³³は、第一原理計算を用いて、降伏強度を支配 するbcc-Feのらせん転位の転位芯と種々の置換型固溶原子 との相互作用について原子オーダーのスケールで系統的に検 討した。その結果、1)多くの固溶元素はらせん転位の芯と引 力の相互作用を持つ、2)いくつかの元素(Si、P、Cu)はらせ ん転位の運動に対するPeierlsポテンシャルを低下させるこ とを明らかとした。さらに、3)その起源が転位のすべりに対 する固溶元素による電子論的効果(化学的ミスフィット)と 関係することを明らかとした。 転位芯と溶質元素との相互作用は、変形初期の転位のすべ り運動のみならず、その後の変形における転位間相互作用や 加工硬化を伴う転位の集団運動、およびそれに続く塑性不安 定現象と深く関係すると考えられ、原子オーダーからμm、 mmおよびmオーダーまでのスケールを対象としたマルチス ケール解析の今後の展開に期待したい。

4、将来展望

筆者は、企業研究者として39年前に鉄鋼材料研究をスタートした。動的ひずみ時効条件の下でFe-0.01N合金を圧延するときわめて明瞭なせん断帯が特定の結晶粒内に形成され、Goss方位を持つ再結晶粒が優先的に核生成する現象に遭遇し、感動した覚えがある。先端解析技術の最近の進歩は著しく、従来見えなかった現象をつぶさに観察することが可能となりつつある。また、計算材料科学の進歩により、従来では計算できなかった詳細な解析やマルチスケールでのアプローチも可能となりつつある。

しかしながら、以下に代表されるような課題も数多く残っ ているように思われる。第一に、加工組織の不均一性である。 実験的にも理論的にもその理解と予測は不十分であり一層の 高度化が求められる。第二に、加工・再結晶の方位選択性で ある。特に、回復現象(核生成)の機構解明とモデル化である。 第三に、転位芯構造や交差すべりなどの一本の転位挙動に加 え集団的な転位運動およびこれらに及ぼす添加元素の影響、 さらには界面エネルギーや界面易動度と界面性格および添加 元素の関係、などに関する基礎的課題である。今まさに、先 端解析技術と計算材料科学が融合し、このような根源的な技 術課題を解決し、材料の潜在能力を引き出す新たな飛躍が期 待できる時代が到来したように感じる。

参考文献

- 第219・220回西山記念技術講座「材料設計を先導する物 理解析技術・計算科学」、日本鉄鋼協会編、(2014)
- 2)潮田浩作,木村謙,村上健一:新版 鉄鋼材料と合金元素,鉄鋼材料と合金元素編集委員会編集,日本鉄鋼協会, (2015),154.
- 3)阿部光延,小甲康二,林征夫,速水哲博:日本金属学会誌, 44 (1980), 84.
- 4) G.Tsukamoto, T.Morikawa, K.Higashida, K.Kimura and K.Ushioda : ISIJ Int., 57 (2017), 1476.
- 5) 潮田浩作, 阿部光延: 鉄と鋼, 70 (1984), 96.
- 6)中西冴,森川龍哉,東田賢二,村上英邦,木村謙,潮田浩 作:鉄と鋼,98 (2012),253.
- 7) K.Murakami, M.Sugiyama and K.Ushioda : IOP Conf. Series : Mater. Sci. Eng., 89 (2015), 012009.
- 8) M.R.Barnett and J.J.Jonas : ISIJ Int., 37 (1997), 697.
- 9) K.Ushioda, S.Nakanishi, T.Morikawa, K.Higashida,
 Y.Suwa and K.Murakami : Mater. Sci. Forum, 753 (2013), 58.
- 10) J.L.Walter and E.F.Koch : Acta Metall., 11 (1963), 923.
- 11) M.Takenaka, Y.Shingaki, T.Imamura and Y.Hayakawa : IOP Conf.Series : Mater. Sci. Eng., 82 (2015), 012042.
- 12) K.Kimura, K.Ushioda, E.Ishimaru and A.Takahashi : Mater. Sci. Eng. A, 663 (2016), 86.
- P.Moeck1, S.Rouvimov1, I.Häusler, W.Neumann and S.Nicolopoulos : Ultramicroscopy, 128 (2013), 68.
- 14) G.Miyamoto, N.Takayama and T.Furuhara : Scr. Mater., 60 (2009), 1113.
- 15) M.Kubota, K.Ushioda, G.Miyamoto and T.Furuhara : Scr. Mater., 112 (2016), 92.
- 16) 久保田学,小林由紀子,潮田浩作,高橋淳:日本金属学会誌,80 (2016),620.
- 17) J.Takahashi, J.Haga, K.Kawakami and K.Ushioda : Ultramicroscopy, 159 (2015), 299.
- 18) 芳賀純, 澤田英明, 潮田浩作: 鉄と鋼, 103 (2017), 221.

- T.Ogawa, N.Maruyama, N.Sugiura and N.Yoshinaga : ISIJ Int., 50 (2010), 469.
- 20) T.Ogawa, K.Sato, H.Dannoshita, K.Maruoka and K.Ushioda : ISIJ Int., 56 (2016), 2290.
- T.Ungár, I.Dragomir, Á.Révész and A.Borbély : J. Appl. Cryst., 32 (1999), 992.
- 22) 冨田美穂,米村光治,稲熊徹,坂本広明,潮田浩作:鉄と 鋼,103 (2017),149.
- 23) F.Roters, P.Eisenlohr, L.Hantcherli, D.D.Tjahjanto, T.R.Bieler and D.Raabe : Acta Mater., 58 (2010), 1152.
- 24) P.Eisenlohr, M.Diel, R.A.Lebensohn and F.Roberts : Int. J. Plasticity, 46 (2013), 37.
- 25) A.Yamanaka : Proc. Int. Conf. Solid-Solid Phase Transf. in Inorg. Mater. (PTM2015), ed. by M.Militzer, G.Botton, L-Q Chen, J.Howe, C.Sinclair and H.Zurob, TMS, (2015), 857.
- 26) S.Schmidt, S.F.Nielsen, C.Gundlach, L.Margulies, X.Huang and D.Juul Jensen : Science, 305 (2004), 229.
- 27) M.Kobayashi, T.Matsuyama, A.Kouno, H.Toda and H.Miura : Mater. Trans., 57 (2016), 2089.
- 28) T.Takaki, A.Yamanaka, Y.Higa and Y.Tomita : J. Computer-Aided Mater. Design, 14 (2007), 75.
- 29) A.Yamanaka, T.Takaki and Y.Tomita : ISIJ Int., 52 (2012), 659.
- 30) 諏訪嘉宏, 冨田美穂, 田中泰明, 潮田浩作: CAMP-ISIJ, 28 (2015), 891.
- 31) T.Furuhara, H.Kawata, S.Morito, G.Miyamoto and T.Maki : Metall. Mater. Trans., 39A (2008), 1003.
- 32) 諏訪嘉宏, 杉浦夏子, 林宏太郎: CAMP-ISIJ, 30 (2017), 387.
- 33) M.Wakeda, T.Tsuru, M.Kohyama, T.Ozaki, H.Sawada, M.Itakura and S.Ogata : Acta Mater., 65 (2017), 445.

(2017年4月17日受付)