

溶接プロセスのシミュレーション・可視化技術

Visualizations and Numerical Simulations in Welding Processes

田中 学 ^{大阪大学} 接合科学研究所 Manabu Tanaka ^{教授}

し はじめに

溶接技術は、自動車・造船などの輸送機器分野をはじめ、 石油化学分野、エネルギー分野、建築分野などのものづくり 産業における組立て・製造工程の基盤技術として世界中で利 用されている。溶接施工技術の範囲には、継手品質の確保は もとより、溶接前後の材料調達から曲げ・成形加工、機械加工、 熱処理、仕上げの精度なども含まれるため、ものづくり産業 の各分野においては、これまでのデータベースやノウハウを 駆使しながら、製造工程全体にわたる品質レベルと生産性の 向上に努めてきたと言える。しかしながら、スマートフォン などに代表されるように質の高いIT技術が普及しつつあり、 生産効率を高めるため、各方面で生産のIoT化が推進されて いる。このような中で溶接技術もCAD/CAM、自動化・ロボッ ト化に対応してきたが、要の溶接プロセスそのものに未解明 な部分が多く、生産のIoT化に応えるべく完璧に予測できう る技術にまで未だ完成されていないのが現状である。

他方、ものづくりのグローバル化が進められる中、ものづ くりの基盤技術としての溶接技術に求められるものが変化し てきている。これまで、溶接プロセスにおける高効率化・高 機能化などが技術開発における重要な課題の一つとして取り 組まれてきたが、更なる次世代の溶接プロセスを創造するた めには、今までの視点とは違う位置から現象をとらえ、その 本質を理解し、まったく新しい発想で技術開発に取り組む姿 勢が必要となってきた。

以上のような背景の下、溶接技術に残された数々の課題を 解決するためには、現象面からの解析を深化させる可視化技 術と、本質をモデル化するためのシミュレーション技術が極 めて有効である。すなわち、溶接現象を詳細に観察するとと もに、その機構を理論的に解析することを通して、これまで定 性的な理解にとどまっていた現象を科学的な視点から定量的 に明らかにすることが肝要である。本稿では、溶接技術の中 でもアーク現象にスポットライトをあて、アーク現象の先進 可視化・シミュレーション技術を活用しながら溶接アーク現 象の本質に迫ろうとする、昨今の取り組みについて紹介する。

なお、本稿は、第229・230回西山記念技術講座の講演内容 をもとに執筆した。

2 溶接アーク現象の可視化

アーク溶接プロセスでは、アークプラズマからの入熱が母 材の溶込み形状等を直接的に支配するため、プラズマの温度 分布の可視化がプロセスの最適化を図る上で重要な鍵とな る。これに加え、高温となった溶融池や、とりわけ消耗電極 式のミグ溶接の場合には電極ワイヤ先端に形成される溶滴の 表面から発生する金属蒸気の混入によって、光放射係数や電 気伝導率等のアークの物性値が大きく変化するため、これが アークの温度低下等を引き起こし、更には母材への入熱を低 下させることが予想される。したがって、溶接プロセスにお けるアーク現象を正しく理解するためには、数値計算シミュ レーションとともに、アーク現象を可視化し、現象の本質を 解き明かすための工夫が必要である。

2.1 高速度イメージ分光システムによるミグ溶接プロセスの 可視化

高速度デジタルビデオカメラや計測機器に代表されるよう に、アーク溶接プロセスで生じる現象の「可視化」技術の進 展は著しい。今まで見えなかったものが見えるようになった ときのインパクトは極めて大きく、現象を支配している自然 法則を瞬間的かつ直感的に捉えることができる可能性を秘め ている。

今までミグ溶接におけるアークを見て、アーク中心に「芯」 のようなものの存在を感じたことはないだろうか。図1はミ グ溶接におけるアークの典型的な写真であるが、その「芯」 の部分の温度は、当然ながら、周囲の薄いフレームの温度よ り明らかに高い、と考えてきたことと思う。しかしながら、 最近の高速度デジタルビデオカメラを駆使した可視化技術の 進歩は、そのような常識さえも覆すものである。

図2は高速度イメージ分光システムの外観である。本シス テムの特徴は、3台の回折格子分光器と3台の高速度デジタ ルビデオカメラによって、ミグアークのイメージをシール ドガスのアルゴン(696.5 nm)と電極ワイヤから蒸発する鉄 (537.1 nmならびに538.3 nm)の3つの線スペクトルイメー ジで同時に撮影できることである。分光の波長分解能は0.4 nmであり、撮影速度は毎秒2,000コマである。それぞれの線 スペクトルイメージをプラズマ診断することにより、ミグ溶 接中の動的なアーク温度分布と鉄蒸気分布が実験的に可視化 できるようになった。

図3は、このシステムを用いて、軟鋼のミグ溶接における 動的なアークを可視化した例である¹⁾。(a) は電極ワイヤ端

図1 ミグ溶接におけるアークの典型例

で溶滴形成が始まったタイミングを0msとしたものであり、 その後、(b)は2.0ms後、(c)は4.0ms後の状態を示してい る。各図の左側からプラズマ温度分布、鉄蒸気濃度分布、ア ルゴン (Ar I)の線スペクトルイメージ、鉄 (Fe I)の線スペ クトルイメージを示している。なお、実験条件は、溶接電流 が270A、アーク電圧が37V、シールドガスがアルゴンであ る。この実験結果が示す重要なポイントは、アーク中心のプ ラズマ温度が周囲のプラズマ温度に比べて5,000Kほど低下 している点である。すなわち、図1に見るように、視覚的には 最も輝度の高い中心部で温度が低く、輝度が明らかに低い周 囲で温度が高くなっていることを意味している。

人類がアーク放電を発見して約200年になるが²⁰、当然な がらアークの中心が最も温度の高い部分であると考えられて きた。実際、従来の静的なアーク放電、すなわち非消耗電極 式のティグアークに対するプラズマ診断の結果は、中心部に ピークを有する正規分布状の温度分布になっている³⁰。

ここで、アークプラズマが局所熱平衡 (Local Thermodynamic Equilibrium, LTE) 状態である場合、輸送係数など各種物性 値の温度依存性を知ることが可能になる^{4,5)}。加えて、プラズ マを構成している電子、イオン、原子や分子の個々の性質を 塗りつぶしてプラズマ全体を一つの流体として捉え、アーク プラズマに電磁流体力学 (magnetohydrodynamics, MHD) 近似⁶⁾を仮定すれば、

$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho v\right) = 0 \dots \dots$
$\frac{\partial}{\partial t} (\rho v) + \rho (v \cdot \nabla) v = -\nabla P + \eta \nabla^2 v + J \times B + \rho g \dots (2)$
$\frac{\partial}{\partial t} \left(\rho C_p T \right) + \rho C_p \left(v \cdot \nabla \right) T = \kappa \nabla^2 T + J \cdot E - U_{arc} \dots (3)$
$\nabla \cdot J = 0 \dots (4)$

図2 高速度イメージ分光システムの外観

537nm

 $J = \sigma E \tag{5}$

の質量保存式、運動量保存式(ナビエ・ストークス方程式)、 エネルギー保存式、電流保存式、オームの法則、マクスウェ ル方程式をそれぞれ連立して解くことにより、プラズマ全体 にわたる速度、圧力、温度、電界強度、電流密度、磁束密度な ど実験による測定が難しい物理量を得ることができる。ここ で、 ρ は密度、 ν は流速、Pは圧力、 η は粘性係数、Jはアーク 電流密度、Bは磁束密度、gは重力加速度、 C_{p} は定圧比熱、 κ は熱伝導率、Eは電界強度、 σ は電気伝導率、 μ は透磁率、tは時間である。

図4は、軸対称2次元のミグアークを数値解析モデルの対

図3 ミグ溶接におけるプラズマ温度分布および鉄蒸気濃度分布、ならびにアルゴンの 線スペクトルイメージおよび鉄の線スペクトルイメージ¹¹

図4 ミグ溶接の数値シミュレーションによるアークプラズマ温度分布および鉄蒸気濃度分布⁷⁾

象とした場合の計算結果である⁷⁾。本モデルの特徴は、陰極 や陽極で生じる現象を考慮するために、以上のMHD方程式 をアークプラズマのみに適用するのではなく、「電極ワイヤ (陽極) -アークプラズマ-母材 (陰極)」に亘って適用して同 時に解くことである。すなわち、(1) ~ (6) の6つの方程式は 各空間に分けて解かれるのではなく、まったく対等に、各種 物性値を変化させることで同じ連立方程式を用いて統一的に 数値計算の解が求められることになる。ただし、「陽極-アー クプラズマ」系と「アークプラズマ-陰極」系では、それぞれ 次のエネルギーバランスの式⁸¹¹⁾を追加して解くことになる。

$$q_{A} = J\left(\frac{5}{2}\frac{k_{B}T}{e} + \frac{\emptyset_{A}}{e} + V_{A}\right) + \left|\kappa\nabla T\right| + U_{arc} - U_{A}$$
(7)

$$q_{K} = J_{i} \left(\frac{3}{2} \frac{k_{B}T}{e} + \frac{\varepsilon_{i} - \mathcal{O}_{K}}{e} + V_{K} \right) - J_{e} \frac{\mathcal{O}_{K}}{e} + \left| \kappa \nabla T \right| + U_{arc} - U_{K} \dots (8)$$

ここで、Jはアーク電流(陽極近傍ではほぼ全てが電子電流)密度、eは電気素量、 ϕ_A は陽極材料の仕事関数、 V_A は陽極降下電圧、 U_A は陽極材料の光放射エネルギー損失である。

他方、 J_i 、 J_e はそれぞれイオン電流密度および電子電流密度、 ε_i はガス分子の電離エネルギー、 V_K は陰極降下電圧、 U_K は陰極材料の光放射エネルギー損失である。なお、アーク電流密度Jに対して $J = |J_i| + |J_e|$ の関係があり、陰極表面近傍におけるイオン電流の割合は数%から50%であると言われている^{8,9)}。

コントロールボリューム法 (SIMPLE 解法)¹² によって、 式(4)及び(5)よりアーク電流密度と電界強度が計算され た後、式(6)より磁束密度が計算され、その後式(1)及び(2) より流速と圧力が計算されて対流項が確定し、式(3)より温 度が計算される。この一連の計算を繰り返し行うことにより 収束解が得られる。

図5 Arアークプラズマの光放射係数に与える鉄蒸気の影響¹³⁾

さて、図4に話を戻そう。この図はアーク中心部の温度が 低下する理由を明快に示している。すなわち、電極ワイヤ先 端から発生した金属 (Fe) 蒸気がプラズマ気流によってアー ク柱の中心部に輸送され、その結果、金属蒸気プラズマ領域 が形成されるとともに、その領域のプラズマ温度が低下する ことが数値シミュレーションによっても予測された。また、 そのプラズマ温度が7.000 K程度であり、実験結果とよく一 致している。この温度低下の理由は、図5に示すとおり¹³⁾、金 属蒸気の混入によって光放射係数が大きくなり、光放射エネ ルギー損失によってプラズマ温度が低下するためである。図 6は、この時のミグアークにおける全エネルギーバランスを定 量的に示したものである⁷⁾。9.352 W (溶接電流280 A、アーク 電圧33.4 V) の投入エネルギーに対して母材に輸送されたエネ ルギーは5.516 Wであり、熱効率は約59%である。一方、アー クの光放射によって散逸されたエネルギーは3.810 Wであり、 投入エネルギーの実に約41%に達している。この光放射エネ ルギー損失は、ティグアークの光放射エネルギー損失¹⁴⁾の10 倍以上にも達し、アーク柱の中心部に形成された金属蒸気プ ラズマ領域の温度を低下させている。

ティグ溶接では電位勾配による拡散(電気泳動)によって 金属蒸気(金属イオン)がアークプラズマに混入するのに対 して¹⁵⁾、ミグ溶接では主にプラズマ気流によって金属蒸気 がアークプラズマに輸送される。また、それによって、金属 蒸気領域とシールドガス領域の二つに分離され、ミグアーク が二重構造という非常にユニークな形態を呈するのである。 このミグアーク特有の現象については、Ar+5% CO₂、Ar+ 10% CO₂、Ar+15% CO₂、Ar+20% CO₂までの混合ガスを 用いたマグアークについても同様の現象が存在することが実 験的に確認されている^{16,17)}。

図6 ミグアークの「電極ワイヤ-アークプラズマ-母材」系の エネルギーバランス⁷⁾

2.2 ミグ溶接と炭酸ガスアーク溶接におけるアークプラズマの 違い

さて、前節は純アルゴンシールドガスのミグ溶接の場合で ある。ミグ溶接では、高電流域においてスプレー移行となり、 スパッタの少ないスムーズな溶滴移行が達成される。一方、 純CO₂シールドガスを使用する炭酸ガスアーク溶接 (マグ溶 接の一種)の場合はどうであろうか。炭酸ガスアークは熱的 ピンチ効果によってアークが緊縮し¹⁸⁾、アークルートが溶滴 下面に形成されるため溶滴移行が妨げられる。この結果、高 電流域においてもスプレー移行形態に遷移せずにグロビュー ル移行 (反発移行)形態のままになる。スパッタが多くなる 要因の一つである¹⁹⁾。この炭酸ガスアークの状態はミグアー クに比べて違うのであろうか。

図7は、ミグ溶接と同様に、炭酸ガスアーク溶接における 動的なアークを可視化した例である²⁰⁾。図の左側からプラズ マ温度分布、鉄蒸気濃度分布、酸素(OI, 777.3 nm)の線スペ クトルイメージ、鉄 (Fe I, 537.1 nm) の線スペクトルイメー ジである。実験条件は、溶接電流が300A、アーク電圧が33.5 V、シールドガスが100% CO。である。ここで注目していただ きたいポイントは、酸素の線スペクトルイメージと鉄の線ス ペクトルイメージがほとんど同じで差違のないことである。 ミグ溶接(図3)では、アルゴンと鉄のそれぞれの線スペクト ルイメージに明らかな差違があり、鉄蒸気とアルゴンガスと の分離がなされていることが一目瞭然であった。逆に、炭酸 ガスアーク溶接(図7)では、酸素と鉄のそれぞれの線スペク トルイメージに差違が見られないということは、炭酸ガスと 鉄蒸気が分離されることなく十分に混ざり合っている明らか な証拠と言えよう。プラズマ温度は7,000 K~8,000 Kでほぼ 均一した緩やかな温度分布であり、同様に鉄蒸気濃度も局所 的に高濃度化することなく緩やかな濃度分布を示している。 この主因は、炭酸ガスの熱的ピンチ効果によって緊縮した アークから電極ワイヤ先端へのエネルギー輸送の増加に伴い

溶滴表面温度が上昇し²¹⁾、金属蒸気が多量に発生するため、 かえってアークルートが拡がることになる。その結果、緊縮 したアーク柱と相まってアーク柱内での圧力勾配が低下し、 誘起されるプラズマ気流の流速が抑制され、金属蒸気がアー ク中心部に局所的に輸送されるメカニズムが弱まるため、と 推察される。

3 現象解明に基づくアーク溶接技術 開発の最前線

以上のミグ・マグ溶接におけるアーク現象の可視化により、 溶滴移行形態とアークプラズマ形態との関係が明らかになり つつある。大電流域におけるスプレー移行の出現には、電極 ワイヤ先端部での電磁ピンチ力のみならず、アークプラズマ 形態がミグアークのような二重構造になっていることが必要 条件であることがわかってきた。プラズマ温度と金属 (Fe) 蒸気濃度がわかれば、プラズマ物理学的にアーク柱の電気伝 導率分布を導くことができる⁵⁰。その結果、図8に示すよう な溶接電流の分布が推測された²²⁰。ミグ溶接では、低温化し たアーク中心部よりも高温の周辺部に電流が流れやすくな る¹⁶⁰。その結果、大電流域において、電極ワイヤ先端部の側

 ミグアーク 炭酸ガスアーク
 図8 ミグ溶接と炭酸ガスアーク溶接におけるアーク現象と 電流経路の違い(推測)

図7 炭酸ガスアーク溶接におけるプラズマ温度分布および鉄蒸気濃度分布、ならびに酸素の線スペクトル イメージおよび鉄の線スペクトルイメージ²⁰⁾

面で電磁ピンチ力が効果的に働くとともに溶滴下部での電磁 ピンチ力が弱まるためスプレー移行となる。逆に、炭酸ガス アーク溶接では、アーク中心部にも電流経路が存在するため 溶滴下部での電磁ピンチ力が大きくなり、スムーズな溶滴移 行が妨げられる。その結果、スプレー移行形態に遷移せずに グロビュール移行形態のままになるものと考えられる。スプ レー移行のようなスムーズな溶滴移行形態の発生には、アー ク中心部における電流経路の出現を抑制することが必要であ ることを意味している。

さて、炭酸ガスアーク溶接において、希土類元素を添加した電極ワイヤを正極性で使用した場合、100% CO₂雰囲気でありながらも、大電流域においてスプレー移行形態が出現することが明らかになっている²³⁾。Methongらは、正極性の希土類元素添加ワイヤを用いた炭酸ガスアークについても同様のイメージ分光分析を実施している²⁰⁾。その結果、そのアークプラズマ形態は、まさにミグアークのような二重構造になっていたのである。Methongらの実験結果は図8の推測を支持するものである。

溶接電流の大きさやシールドガスの種類によってミグ・マ グ溶接における溶滴移行形態が大きく変化することは古く から知られており、また、溶接技術者用の教科書においても 明記されている¹⁹⁾。しかしながら、そのメカニズムについて は、溶接アーク物理として取り扱いが極めて難しく、いま、そ の解明の端緒に着いたところである。最新の数値シミュレー ション技術では、電極ワイヤ先端に形成される溶滴とアーク プラズマとの相互作用を考慮に入れた数値モデル化が進み、 複雑な溶滴移行形態の予測が行えるところまで到達しつつ ある^{24,25)}。荻野らは、この数値モデルを応用して、ミグアーク と炭酸ガスアークにおける溶滴移行形態の違いを数値シミュ レーションによって解き明かそうとしており、その結果は図8 を支持している²⁶⁾。今後の詳細なメカニズム解明が待たれる。

4 おわりに

周知のとおり、近年のデジタル技術の進歩は目覚ましい。 本稿でも紹介したように、溶接プロセスで生じる現象の「可 視化」技術には目を見張るものがある。今まで見えなかった ものが見えるようになったときのインパクトは極めて大き く、現象を支配している自然法則を瞬間的かつ直感的にとら えることができる可能性を秘めている。溶接プロセスに携わ る研究者や技術者は、日常の観察や計測を通じて、対象とす るプロセスのメカニズムや現象の本質に迫る仮説を持ってい る。今まで見えなかったものが見えるということは、パズル の最後のピースを埋めるかのように、仮説から真実への一歩 を後押ししてくれる。あるいは、考えてもいなかった自然法 則の美しさに出会う機会も与えてくれるだろう。

最後に、アーク研究の開拓時代に目を向けてみたいと思 う。それは、ハータ・エアトン (1854-1923年, 英国) による 著書「The Electric Arc」である²⁾。彼女は英国電気学会の女 性初の会員になったアーク放電の研究者であり、この著書は 世界で初めて系統的にアーク放電現象を纏めた本である。そ の本の中にはアーク放電現象に関する数多くの図がある。そ れらは、エアトンが実験観察を通じて自身の目で捉えて描 いた精緻な白黒のスケッチであり、その横には、それぞれの 領域の発色の違いが理解できるように色が言葉で示されて いる。その一例を図9に示す。アーク中心部では「Violet」、 アーク外周部では「Green」、アークと電極のルート部で は [White]、それ以外の電極領域では [Yellow]や [Dark Yellow などが記載されている。これは、まさに1902年当時 の現象の可視化である。彼女はこの著書の中で次のような言 葉を残している。「実験はアークを支配している神秘的な自 然法則を見出すための自然への問いかけである。そして、自 然はそれに対して時間を掛けて控えめに答えてくれる。」

いつの時代においても、物事の本質を見極める力が必要で ある。そこには、忍耐強い観察と重厚な思考に基づく弛まな い努力が含まれる。加えて、未来に胸を膨らませて夢を描け る心が必要であろう。「可視化」は各々のエキスパートがそれ ぞれの視点から物事の本質を見極める機会と、それぞれの夢 を織りなす機会を生み出してくれることも魅力である。これ まで個々の企業や個々の研究機関等で進めてきた保有の知 識や蓄積技術をマッチングさせることを容易にしてくれる。 「可視化」は「1+1」が2ではなく、3にも4にも拡がる大きな 可能性を秘めている。先進可視化技術で溶接科学の未踏領域 を切り拓き、未来に輝く革新的な溶接技術の開発に繋げる。 溶接分野の枠を越えて、学協会、大学、中立研究機関、企業の

図9 1900年初頭のアーク放電のビジュアル化一著書 [The Electric Arc] より-²⁾

夢が縦糸と横糸を織りなし、オールジャパンで日本のものづ くりの発展に繋がることを期待している。

参考文献

- 1) 辻村吉寛, 田中学: 溶接学会論文集, 30 (2012) 4, 288.
- 2) H.Ayrton : The Electric Arc, The Electrician Printing & Publishing, London, (1902)
- 3)平岡和雄,塩飽孝至,黄地尚義:溶接学会論文集,14 (1996),641.
- 4) 田中学: 溶接技術, 44 (1996), 122.
- 5) 神沢淳: プラズマ伝熱, 信山社サイテック, (1992)
- 6)赤崎正則,村岡克紀,渡辺征夫,蛯原健治:プラズマ工学の基礎,産業図書,(1987)
- 7) 辻村吉寛, 田中学: 溶接学会論文集, 30 (2012) 1, 68.
- 8) M.N.Hirsh and H.J.Oskam : Gaseous Electronics, Chapter 5 Electric Arcs and Arc Gas Heaters by E. Pfender, Academic Press, New York, (1978)
- 9) 安藤弘平,長谷川光雄:溶接アーク現象(増補版),産報 出版,(1973)
- 10) J.F.Lancaster: 溶接アークの物理, 溶接学会, (1990)
- 11) 黄地尚義: 溶接・接合プロセスの基礎, 産報出版, (1996)
- 12) スハス・パタンカー:コンピュータによる熱移動と流れ の数値解析,森北出版,(1985)
- M.Tanaka, K.Yamamoto, S.Tashiro, K.Nakata,
 E.Yamamoto, K.Yamazaki, K.Suzuki, A.B.Murphy and J.J.Lowke : J. Phys. D : Appl. Phys., 43 (2010), 434009 (11pp).
- 14) M. Tanaka and J. J. Lowke : J. Phys. D : Appl. Phys., 40 (2007), R1.

- 15) H.Park, M.Trautmann, K.Tanaka, M.Tanaka andA.B.Murphy : J. Phys. D : Appl. Phys., 51 (2018), 395202 (15pp) .
- 16) 茂田正哉,中西省太,田中学,A.B.Murphy:溶接学会論 文集,33 (2015) 2, 118.
- T.Methong, M.Shigeta, M.Tanaka, R.Ikeda, M.Matsushita and B.Poopat: Sci. & Tech. Welding & Joining, 23 (2018), 87.
- 18) 田中学, 田代真一: 溶接学会論文集, 25 (2007), 336.
- 19) 溶接・接合技術総論,溶接学会・日本溶接協会編,産報 出版,(2015)
- 20) T.Methong, T.Yamaguchi, M.Shigeta, M.Tanaka, R.Ikeda, M.Matsushita and B.Poopat : Weld World, 61 (2017), 1039.
- 21) 山崎圭,山本恵理,鈴木啓一,興石房樹,和木謙治,田代 真一,田中学,中田一博:溶接学会論文集,26 (2008) 3, 214.
- 22) 田中学: 溶接技術, 65 (2017) 2, 40.
- 23) 片岡時彦,池田倫正,小野守章,安田功一,平田好則:溶 接学会論文集,26 (2008),37.
- 24) 荻野陽輔, 平田好則: 溶接学会論文集, 34 (2016), 35.
- 25) 荻野陽輔, 平田好則, 木花翔吾, 新田夏規:溶接学会論文 集, 36 (2018), 94.
- 26) Y. Ogino, Y. Hirata and S. Asai : Numerical simulation describing influence of the shielding gas on the metal transfer phenomena in GMAW, IIW Doc.212-1490-17, Shanghai, (2017)

(2019年1月9日受付)