

ーザ誘起ブレークダウン分光法を用いた 溶鋼リアルタイム分析技術の開発

Development of Real-time Analysis of Molten Steel Using Laser Induced Breakdown Spectroscopy

> 出口祥啓 Yoshihiro Deguchi

徳島大学 大学院社会産業理工学研究部 教授

」緒言

近年、鉄鋼プロセスなどの様々な分野において、物質の元 素組成をリアルタイムで計測可能な技術が切望されている。 鉄鋼プロセスでは、鉄鉱石、コークス、石灰石などを原料と して鋼板などを製造する過程で各プロセス中の成分組成を 計測することが求められ、溶融金属の組成を制御することな どが重要となる。レーザーを用いた非接触、リアルタイム計 測方法として、レーザー誘起ブレークダウン分光法 (Laser Induced Breakdown Spectroscopy, LIBS) がある¹⁾。LIBS は、レーザー光を集光し、プラズマ化した試料からの発光ス ペクトルを計測することで、気体、液体、固体中の元素組成 をその場・リアルタイムに計測可能な計測法である。LIBS は装置構成がシンプルである利点を有する他、気体、液体、 固体中の元素組成をppb~%の広い濃度範囲で検知できる。 LIBSは、このような優れた特性を有していることより、鉄鋼 プロセスの他、エンジン、火力発電プラント、原子力発電プ ラント、海洋探査、廃棄物リサイクル、構造物など、幅広い 分野での産業応用展開が期待されている¹⁰。近年、レーザー 装置の小型化、長寿命化が進み、この技術進展がLIBSの原理 を使用した装置開発を後押ししている原動力の一つとなり、 LIBSの産業応用展開が更に加速されてきている状況にある。 鉄鋼プロセスにおいて、有効と考えられるLIBS適用場所を Fig.1に示す²⁾。原料の元素組成計測³²⁰⁾、溶鋼や溶融金属での 元素組成計測²¹⁻²⁸⁾、鋼材やスラグの元素組成計測²⁹⁻⁴⁷⁾などへ の適用が報告されている。

一方、LIBSにおけるプラズマ生成過程は複雑な物理現象 を含んでおり、その過程を理論的に解析することは難しい。 LIBSでは、常温状態の測定対象に対して、レーザー照射によ り、ナノ秒の時間レベルで数万度のプラズマが形成され、周 囲環境との相互作用をしながら温度が低下していく。この過 程で発生する元素発光を検知し、測定対象元素の同定と定量

452

を行うが、生成されるプラズマが空間的、時間的にも均一で なく、局所熱平衡状態 (local thermodynamic equilibrium : LTE) が成立しない場も多く存在する。また、計測対象性状、 特にレーザー照射の計測対象表面性状がプラズマ生成に影響 を及ぼす。このため、プラズマの状態変化に伴う信号強度の 変化を補正することが難しく、定量性の向上がLIBSの重要 課題の一つとなっている¹⁾。

本研究では、LIBSの定量性向上に関する新たな取り組み として、ロング及びショートパルスレーザー光を組み合わせ たLS-DP-LIBS (Long-Short Double Pulse LIBS)⁴⁸⁵³⁾につい て解説すると共に、本手法を溶鋼中炭素成分分析へ適用した 結果を示す。

。 LIBSの原理

LIBSの原理図をFig.2に示す¹⁾。LIBSでは、レーザーを集 光させて測定対象物に照射し急速に加熱することにより、励 起状態のイオンを含むプラズマを生成する。励起された原 子・イオンが低いエネルギーレベルに落ちるときに、成分特 有の周波数を有する光を発する。発光強度は成分の数密度に 相関があり、各スペクトルの波長とスペクトル強度を求める ことで、存在する成分の識別と定量が可能になる。プラズマ からの発光強度*Li*は以下の式を用いて表すことができる¹⁾。

$$I_{i} = n_{i} K_{i,j} g_{i,j} \exp\left(-\frac{E_{i,j}}{kT}\right)$$
(1)

ここで、 n_i は成分iの分子数密度、 $K_{i,j}$ は成分iの上位準djにおけるアインシュタインA係数などを含む係数、 $g_{i,j}$ は成分iの上位準djにおける縮退度、 $E_{i,j}$ は成分iの上位準djにおける拡退度、 $T_{i,j}$ は成分iの上位準djにおけるエネルギー、kはボルツマン定数、Tはプラズマ

Fig.2 Laser-induced plasma processes of single-pulse LIBS (SP-LIBS).

温度である。式(1)はプラズマが局所熱平衡(LTE:Local Thermodynamic Equilibrium)である場合に成り立つ関係式 である。LIBSでは、測定対象物の性状や周囲環境により生成 されるプラズマ状態が変化するため、安定したプラズマ生成 手法、プラズマ温度変化などの補正方法、発光強度から定量 値を求める信号解析手法.などが重要となる。

式(1)では均一なプラズマ温度と仮定しているが、実際に はLIBSにより生成されるプラズマは均一とはならず、時間 的、空間的なプラズマの不均一性を考慮した解析が必要とな る。また、レーザーと計測対象・周囲ガスとの相互作用もプ ラズマ生成に影響を及ぼす。LS-DP-LIBSの概念をFig.3に示 す。LS-DP-LIBSは、マイクロ秒とナノ秒のパルス幅を有す るレーザー光を組み合わせたダブルパルスLIBSであり、ロ ングパルスレーザーにより、計測対象表面のクリーニングと 表面条件の均一化、並びに生成されるプラズマの安定化を図 り、定量性を向上する手法である^{48,49}。

3 LS-DP-LIBS実験装置

本研究で使用したLS-DP-LIBS実験装置をFig.4に示す。本 装置はレーザー、レンズ、分光器、ICCDカメラ及び高周波加 熱炉で構成される。高周波加熱炉を使用した溶鋼を測定対象 に、溶鋼中の炭素成分計測におけるLS-DP-LIBSの特性を評 価した。炭素のLIBS計測では、193nmの発光線を使用した。 酸素による193nmの光吸収を除去するため、計測光路をア ルゴンにて、分光器内を窒素にてパージした。また、溶鋼表 面にガスを導入可能な配管を設置し、溶鋼表面にアルゴン希 釈した酸素を断続的に導入可能とした。LIBS計測では、ロン グ・ショートダブルパルス発振が可能なNd:YAGレーザー (Lotis TII, LIBS-2145LIBS) からのレーザー光を溶鋼に集光

Fig.3 Laser-induced plasma processes of LS-DP-LIBS.

(a) Schematic diagram of experimental setup

(b) Inter-pulse delay time of long and short pulse lasers

Fig.4 Experimental setup of LP-DP-LIBS.

し、プラズマを発生させた。プラズマからの発光信号はスプ リッターによってレーザーパス上から分離され、光ファイ バに導入される。光ファイバにより受光された光は、分光器 (SOL, NP-250-2 M) で分光し、ICCDカメラ (Andor, iStar DH334T-18U-03) によって測定される。本研究で使用したロ ング・ショートダブルパルスNd:YAGレーザーは、ロング パルスのパルス幅 (40-100ps)、ショートパルス (5ns) との 発振タイミングを調整できる.計測されたLIBS信号は、コン ピュータに転送されスペクトル解析される。

4 実験結果及び考察

鋼材中のマンガン及び炭素成分計測に対するLS-DP-LIBS の優位性はCuiら^{51,53)}により明らかとされている。通常の LIBSでは、計測対象物の表面性状や計測対象物の温度など に影響され、定量計測が困難となる。一方、LS-DP-LIBSで は、ロングパルスレーザー照射の効果により、計測対象物の 表面性状や計測対象物の温度の影響が除去され、ppmレベル の定量計測性を得ることができる。

ここでは、溶鋼中の炭素成分に対し、LS-DP-LIBSを適用した計測結果を示す⁵³⁾。炭素濃度が規定された鋼材を対象に、

高周波加熱炉にて鋼材を溶融してLIBS計測を行なった。溶 融からの時間と、炭素と鉄の発光強度比*I_c/I_{Fe}*の関係をFig.5 に示す。炭素からの発光強度としては193nmの発光線を使 用し、194nmに位置する鉄の発光線との強度比を計測した。 時間とともに193nmに位置する炭素スペクトルが低下して いく様子がリアルタイムで確認できている。

溶鋼表面にアルゴン希釈した酸素を断続的に導入し、LS-DP-LIBS計測を行った結果をFig.6に示す。Fig.6では、標準 鋼材サンプルを用いた校正試験を基に、炭素と鉄の発光強度 比*I_c/I_{Fe}より炭素濃度を求めた。酸素導入前では、溶鋼中炭素 濃度は安定しており、酸素導入とともに急激に炭素濃度が低 下することが確認できる。LIBS計測では、計測対象物の表面 部分の分析を行うため、酸素導入を止めると溶鋼の流動によ り炭素濃度が上昇する様子も確認できる。2度目の酸素導入 でも同様な傾向が観察された。溶鋼に酸素導入を行う場合、 溶鋼表面に酸化膜が形成されやすく、通常のLIBS計測では、 計測に不安定性が生じやすい。一方、LS-DP-LIBSでは、その 影響を排除でき、安定した計測が可能となっている。本結果* より、LS-DP-LIBSにより、溶鋼中炭素濃度をリアルタイムで 計測可能なことを実証できた。鉄鋼プロセスへの適用では、 計測対象までの距離の考慮⁵⁴⁾ やレーザー光の焦点を自動で 調整するオートフォーカス機能⁵⁵⁾を採用する必要がある。こ れらの技術を組み合わせることにより、鉄鋼プロセスにおけ

Fig.6 Decarburization of liquid steel samples measured by LS-DP-LIBS.

Fig.5 Monitoring of Carbon/Iron LIBS intensity ratio in liquid steel samples
(a) Monitoring of Carbon element in liquid steel samples
(b) LIBS Spectrum at 0.5 min. after melting
(c) LIBS Spectrum at 12 min. after melting
(d) LIBS Spectrum at 15 min after melting

るモニタリングとプロセス制御に活用されていくことが期待 される。

5 結言

LS-DP-LIBSの原理と装置構成を説明するとともに、溶鋼 中炭素濃度計測への応用例を取りまとめた。LIBSは元素組 成をリアルタイムに計測可能な計測法であり、鉄鋼プロセス への応用展開が積極的に図られてきている。一方、LIBS を産 業応用で使用する場合、定量性の向上や計測対象の表面性状 や形態変化に対する対応技術開発などが必要となる。長短パ ルスレーザー光を組み合わせたLS-DP-LIBSは、対象の表面 性状や形態変化に対応できる有望な技術であり、今後、この ような技術革新活用により、LIBSが鉄鋼プロセスにおける モニタリングとプロセス制御に応用されていくことが期待さ れる。

参考文献

- 1) Y. Deguchi : Industrial Applications of Laser Diagnostics, CRS Press, Taylor & Francis, New York, USA, (2011)
- Z.Z.Wang, Y.Deguchi, F.J.Shiou, J.J.Yan and J.P.Liu : ISIJ Int., 56 (2016) 5, 723.
- 3) S.J.Qiao, Y.Ding, D.Tian, L.Yao and G.Yang : Appl. Spectrosc. Rev., 50 (2015), 1.
- 4) C.J.Lorenzen, C.Carlhoff, U.Hahn and M.Jogwich : J. Anal. At. Spectrom., 7 (1992), 1029.
- 5) A. M. Popov, T.A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N.B. Zorov, I.A. Kal'ko, Y.N. Sidorina, I.A. Bugaev and Y.N. Nikolaev : J. Anal. At. Spectrom., 29 (2014), 1925.
- C. Álvarez, J. Pisonero and N. Bordel : Spectrochim. Acta Part B, 100 (2014), 123.
- 7) X. Wan and P. Wang: Appl. Spectrosc., 68 (2014), 1132.
- T. Hussain and M. A. Gondal : J. Phys. : Conf. Ser., IOP Publishing, Islamabad, 439 (2013), 012050-1.
- 9) S.Laville, M.Sabsabi and F.R.Doucet : Spectrochim. Acta Part B, 62 (2007), 1557.
- D.L.Death, A.P.Cunningham and L.J.Pollard : Spectrochim. Acta Part B, 64 (2009), 1048.
- 11) D.L.Death, A.P.Cunningham and L.J.Pollard : Spectrochim. Acta Part B, 63 (2008), 763.
- 12) L.W.Sheng, T.L.Zhang, G.H.Niu, K.Wang, H.S.Tang, Y.X. Duan and Hua Li:J. Anal. At. Spectrom., 30 (2015), 453.
- 13) J.D.Pedarnig, M.J.Haslinger, M.A.Bodea, N.Huber,H.Wolfmeir and J.Heitz : Spectrochim. Acta Part B, 101

(2014), 183.

- 14) K.J.Grant, G.L.Paul and J.A.O'neill : Appl. Spectrosc., 45 (1991), 701.
- K.J. Grant, G.L. Paul and J.A. O'neill : Appl. Spectrosc., 44 (1990), 1711.
- D. Michaud, R. Leclerc and E. Proulx : Spectrochim. Acta Part B, 62 (2007), 1575.
- P.Yaroshchyk, D.L.Death and S.J.Spencer : Appl. Spectrosc., 64 (2010), 1335.
- P.Yaroshchyk, D.L.Death and S.J.Spencer : J. Anal. At. Spectrom., 27 (2012), 92.
- L.Barrette and S.Turmel : Spectrochim. Acta Part B, 56 (2001), 715.
- 20) S.Rosenwasser, G.Asimellis, B.Bromley, R.Hazlett, J.Martin, T.Pearce and A.Zigler : Spectrochim. Acta Part B, 56 (2001), 707.
- 21) R.Noll, H.Bette, A.Brysch, M.Kraushaar, I.Mőnch, L.Peter and V.Sturm : Spectrochim. Acta Part B, 56 (2001), 637.
- 22) C. Carlhoff, C.J. Lorenzen, K.P. Nick and H.J. Siebeneck : Proc. SPIE-Int. Soc. Opt. Eng., SPIE, Bellingham, 1012 (1989), 194.
- C. Carlhoff and S. Kirchhoff : Laser and Optoelektronik, 23 (1991), 50.
- 24) G.Hubmer, R.Kitzberger and K.Mörwald Anal. Bioanal. Chem., 385 (2006), 219.
- C.Aragón, J.A.Aguilera and J.Campos : Appl. Spectrosc., 47 (1993), 606.
- 26) J.Gruber, J.Heitza, H.Strasser, D.Bàuerle and N. Ramaseder : Spectrochim. Acta Part B, 56 (2001), 685.
- 27) U.Panne, R.E.Neuhauser, C.Haisch, H.Fink and R.Niessner : Appl. Spectrosc., 56 (2002), 375.
- 28) A.K.Rai, F.Y.Yueh, J.P.Singh and H.S.Zhang : Rev. Sci. Instrum., 73 (2002), 3589.
- 29) C.M.Li, Z.M.Zou, X.Y.Yang, Z.Q.Hao, L.B.Guo, X.Y.Li, Y.F.Lu and X.Y.Zeng : J. Anal. At. Spectrom., 29 (2014), 1432.
- 30) Q.D.Zeng, L.B.Guo, X.Y.Li, C.He, M.Shen, K.H.Li, J.Duan, X.Y.Zeng and Y.F.Lu : J. Anal. At. Spectrom., 30 (2015), 403.
- 31) Y.Zhang, Y.H.Jia, J.W.Chen, X.J.Shen, L.Zhao, C.Yang, Y.Y.Chen, Y.H.Zhang and P.C.Han Front. Phys., 7 (2012), 714.
- 32) A. González, M. Ortiz and J. Campos : Appl. Spectrosc., 49 (1995), 1632.

456

- 33) F.Leis, W.Sdorra, J.B.Ko and K.Niemax : Mikrochim. Acta [Wien], II (1989), 185-.
- 34) K.J. Grant and G.L. Paul : Appl. Spectrosc., 44 (1990), 1349.
- 35) T.L.Thiem, R.H.Salter, J.A.Gardner, Y.I.Lee and J.Sneddon : Appl. Spectrosc., 48 (1994), 58.
- 36) R. Noll, R. Sattmann and V. Sturm : Proc. SPIE-Int. Soc. Opt. Eng., SPIE, Bellingham, 2248 (1994), 50.
- 37) F.Boué-Bigne : Spectrochim. Acta Part B, 63 (2008), 1122.
- 38) J.Vrenegor, R.Noll and V.Sturm : Spectrochim. Acta Part B, 60 (2005), 1083.
- 39) L.X. Sun and H.B. Yu: Talanta, 79 (2009), 388.
- 40) S. Palanco and J. J. Laserna : J. Anal. At. Spectrom., 15 (2000), 1321.
- 41) Y.I.Lee, S.P.Sawan, T.L.Thiem, Y.Y.Teng and J.Sneddon : Appl. Spectrosc., 46 (1992), 436.
- 42) C.Aragòn, J.A.Aguilera and F.Peñalba : Appl. Spectrosc., 53 (1999), 1259.
- 43) V.Sturm, L.Peter and R.Noll : Appl. Spectrosc., 54 (2000), 1275.
- 44) L.Peter, V.Sturm and R.Noll : Appl. Opt., 42 (2003), 6199.
- 45) M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens and L. Paulard : Spectrochim. Acta Part B, 56 (2001), 661.
- 46) B.Német and L.Kozma : J. Anal. At. Spectrom., 10 (1995), 631.

- B.Német and L.Kozma : Spectrochim. Acta Part B, 50 (1995), 1869.
- 48) 出口祥啓:入門 鉄鋼分析技術Ⅲ,日本鉄鋼協会評価・ 分析部会編,(2017),63.
- 49) Z.Z.Wang, Y.Deguchi, R.W.Liu, A.Ikutomo, Z.Z.Zhang,
 D.T.Chong, J.J.Yan, J.P.Liu and F.J.Shiou Appl. Spectrosc.,
 71, (2017) 9, 2187.
- 50) M.C.Cui, Y.Deguchi, Z.Z.Wang, Y.Fujita, R.W.Liu, F.J.Shiou and S.D.Zhao : Spectrochim. Acta Part B, 142 (2018), 14.
- 51) M.C.Cui, Y.Deguchi, Z.Z.Wang, S.Tanaka, Y.Fujita and S.D.Zhao : Appl. Spectrosc., 73 (2019) 2, 152.
- 52) R.W.Liu, K.Rong, Z.Z.Wang, M.C.Cui, Y.Deguchi, S.Tanaka, J.J.Yan and J.P.Liu : ISIJ Int., 60 (2020) 8, ISIJINT-2019-740.
- 53) M. C. Cui, Y. Deguchi, C. F. Yao, Z. Z. Wang, S. Tanaka and D. H. Zhang : Spectrochim. Acta Part B, 167 (2020), 105839.
- 54) M.C.Cui, Y.Deguchi, S.Tanaka, Z.Z.Wang, M.G.Jeon, Y.Fujita and S.D.Zhao : Plasma Science and Technology, 21 (2019) 3, 034007.
- 55) Z.Z.Wang, Y.Deguchi, F.J.Shiou, S.Tanaka, M.C.Cui, K.Rong and J.J.Yan i ISIJ Int., 60 (2020) 5, ISIJINT-2019-317.

(2020年4月23日受付)