

量子ビームを用いたミクロ組織解析法の開発 とそれに基づく力学特性や組織形成の理解

Development of Microstructure Analysis Using Quantum Beam for Understanding the Origin of Mechanical Properties and Microstructure Formation

> 佐藤成男 Shigeo Sato

茨城大学 大学院理工学研究科 量子線科学専攻 教授

し 緒言

本研究会ではX線、中性子などの量子ビームを用い、様々 なミクロ組織要素を対象に測定・解析法の開発とそれら解析 値をもとに、材料の特性や組織形成予測に関する研究を実施 した。強度¹⁻⁵⁾、疲労⁶⁾、延性⁷⁾などの諸特性や集合組織^{8,9)}、相 変態¹⁰⁻¹³⁾、バリアント選択¹⁴⁾などの組織形成に関連した量子 ビーム解析について議論したが、力点を置いたのが転位と相 変態である。転位は様々な力学特性に作用するが、転位増殖 による加工硬化は、延性、疲労等の様々な現象に派生する。 このため転位増殖と加工硬化の関係を探る重要性は高く、転 位密度を正しく求める測定、解析法が必要となる。また、変 態誘起塑性 (Transformation-Induced Plasticity: TRIP) を示 す鋼は複相組織により延性と強度特性を両立する。特に残留 オーステナイト相の相分率や安定性が特性に作用するため、 正しく相分率を求める必要があり、さらには残留オーステナ イト相が形成するベイナイト変態温度域での相変態に伴う組 織形成過程の観察が望まれている。以上を背景に、本研究会 では量子ビームを用いた測定、解析法の妥当性、有効性につ いて議論し15-28)、得られる知見をもとに力学特性の理解や組 織形成過程に関する新しい知見を導いた。本稿では研究会の 成果の中から転位と相変態に関するトピックを抜粋して紹介 する。あわせて、これから量子ビームを用いたミクロ組織解 析を活用する研究者、開発者にむけ、その一助となる情報を 解説する。

(2) 転位解析、相分率解析の課題

転位の観察、評価は電子顕微鏡により行われることが多い。 透過電子顕微鏡 (Transmission Electron Microscopy: TEM) は転位の分布状態やその下部組織を観察でき、転位密度を求め ることも可能である。ただし、TEM観察により転位密度を求め る際には統計精度を得るため多視野の観察が必要となる。加え て、転位が複雑に絡まり合うと転位密度を求めることは困難に なる。また、走査電子顕微鏡 (Scanning Electron Microscopy : SEM)の後方散乱電子回折 (Electron BackScatter Diffraction: EBSD)において観察される局所方位差により転位密度を求 める方法も提案されている²⁹³¹⁾。ただし、局所方位差から得ら れる転位密度はGeometrically Necessary (GN) 転位であり、 Statistically Stored (SS) 転位は評価されない。

一方、X線/中性子回折ラインプロファイル解析からも転位 密度が求められる。転位により結晶格子にミクロひずみが発 生し、それに伴う格子定数の分布がラインプロファイルの拡 がりとして観測される。このラインプロファイルからミクロひ ずみを求め、転位密度に換算する。観測しているのは転位芯 の周囲に発生するミクロひずみであるが、ミクロひずみは転 位密度(ρ)に加え、転位が持つひずみの場の大きさ(R_e)に より変化する。R_eは転位の分布状態に依存し、たとえば転位 ダイポールや小角粒界などの転位配列によりひずみ場が緩和 されるとR_eは小さくなる。さらに、R_eを転位間距離(≈1√ρ) で規格化したパラメータが転位配置の状態を示唆するパラ メータMとして求められる^{32,33)}。

 $M = R_e \sqrt{\rho} \quad \dots \qquad (1)$

M=1はR_eが転位間距離と等しい状態であり、M>1にて転位 間の相互作用が弱いランダム配置の状態を表し、1より小さい ほど転位間の相互作用が強い状態を表している。転位間の相互 作用が強い状態とはダイポールの形成や小角粒界など転位の 安定(低エネルギー)配列状態である。ラインプロファイル解析 は転位の量や状態を数値として導くことができるが、必ずしも TEMやEBSD観察で得られる実空間イメージと対応づけて議 論されてはいない。たとえば、転位配列パラメータと転位組織 や転位の分布状態との関係は不明確である。また、EBSDから 求められるGN転位密度とラインプロファイル解析から求めら れる総転位密度が塑性ひずみ量や加工硬化量とどのような関係 にあるかも議論がなされていない。そこで、個々の分析法で得 られる情報をリンクし、また、それら分析法を統合した情報から 材料特性の理解に活かすことが課題となる。

複相組織の相分率解析にもEBSDやX線回折が利用され ることが多い。ただし、それぞれの分析法には課題がある。 EBSDの分解能に依存するが、薄板状や針状の形態を持つ相 は検出しにくく、相分率は低めに見積もられることが多い。ま た、X線回折は結晶相の回折強度比から相分率が求められる が、集合組織の影響により回折強度は変動する。このため、X 線回折測定の際、試料を回転、揺動し、集合組織の影響を緩和 することで相分率解析が行われることもある。ただし、測定さ れた回折パターンから集合組織の影響が十分に除かれている かは心配の種になる。また、EBSDやX線回折は高温下での測 定も可能であるが、Mnのような酸化しやすい元素が表面脱離 するようなケースでは本来生じる相変態現象を正しく捉えら れないこともある。

回折法における相分率解析において、集合組織の情報を除 かず、その情報を積極的に解析し、集合組織と相分率を同時 に求めるRietveld-texture解析³⁴³⁶⁾が推奨される。この解析 には、高エネルギーX線回折を用いた二次元回折パターン、 または、様々な検出方位にて回折パターンが得られるパルス 中性子回折データを用いる。高温下の相変態現象を捉えるに は、表面酸化の影響を無視できる数mm以上の厚さを持つバ ルク試料で測定する必要がある。中性子は鉄鋼に対する透過 性が高いため、その要望に応えることができる。そこで、鉄 鋼製造プロセスを模した加熱、冷却が可能なその場測定シス テムの開発とそれに基づくミクロ組織形成過程の観察から新 しい知見を導くことが課題となる。

3.1 標準試料

圧延加工材やマルテンサイトのような10¹⁵ m⁻²オーダーの 転位密度を持つ試料のラインプロファイル解析では、転位や 結晶子による回折ピークの拡がりが大きい。このため、装置 由来のラインプロファイルに用いる標準試料に無頓着で差し 支えない。ただし、10¹³~10¹⁴ m⁻²オーダーの比較的低い転位 密度を有する試料、たとえば塑性変形量が小さい材料や塑性 変形に伴う加工硬化が小さい材料の場合、転位に起因した回 折ピークの拡がりは小さくなるため、適切な標準試料を選択 する必要がある。

ラインプロファイル解析用標準試料として、National Institute of Standards and Technology (NIST) からLaB₆粉 末 (SRM660 series) やSi粉末 (SRM640 series) が市販され ている。また、ラインプロファイル解析用標準試料ではない が、CeO2粉末 (SRM674 series) が利用されることもある。そ れら標準試料に対し、Cu線源のBragg-Brentano型光学系X 線回折装置、つまり一般的な実験室X線回折装置を用い、X 線回折パターンを測定し、回折ピークの半価幅∆Kを比較し た結果をFig.1に示す。回折角 (2θ) を波長 (λ) で規格化し た波数 ($K = (2 \sin \theta / \lambda)$) にてプロットしている。LaB₆粉末 の半価幅は波数に対しほぼ一定値であり、SiやCeO2の半価 幅に比べ小さい。NISTのSi, CeO2粉末に対する製品証明書 には結晶子サイズ効果による拡がりが明記されており、その 影響によりLaB。粉末の半価幅より大きい。つまり、Si、CeO。 粉末を標準試料とした場合、装置由来の回折ピークの拡が りが大きめに見積もられるため、試料由来の回折ピークの拡 がりは小さく見積もられてしまう。Fig.2はオーステナイト 系ステンレス鋼の220反射に対し、転位により回折ピークに 拡がりが生じた場合の半価幅 $\Delta K_{ ext{dislocation}}$ を計算した結果であ る。ΔK_{dislocation}の計算において回折ピーク形状はGauss 関数と 仮定し、装置由来の回折ピークの拡がりはFig.1のLaB₆の半価 幅をコンボリューションしている。また、M=1とした。たとえ ば2×10¹³ m⁻²の転位密度では、測定される回折ピークの拡がり $\Delta K_{\text{dislocation}}$ はおおよそ0.006 nm⁻¹である。仮にSiを標準試料とし た場合、装置由来の回折ピークの拡がり $\Delta K_{\text{instrument}}$ は0.007 nm⁻¹ 程度となり、 $\Delta K_{ ext{dislocation}} < \Delta K_{ ext{instrument}}$ となる。このため試料由来 の回折ピークの拡がりを求めようとしても、半価幅はマイナ スとなるため求めることができない。なお、LaB₆粉末の製品 証明書には結晶子サイズが0.8 μmとの記載がある。つまり、

Fig.1 FWHM of diffraction peaks of the NIST standard powder of LaB₆, CeO₂, and Si as a function of $K=2 \sin \theta / \lambda$.

LaB₆粉末においても結晶子サイズによる回折ピークの拡がり がある。Fig.3は焼鈍した純銅の220反射とLaB₆粉末の311反 射を比較した結果である。焼鈍した純銅のほうが回折ピーク の半価幅は小さい。ラインプロファイル解析に利用する標準 試料は簡便にはNIST製LaB₆粉末を利用すれば良いが、可能 であれば焼き鈍した金属試料の利用が望ましい。

3.2 ラインプロファイル解析のためのX線回折測定条件

ラインプロファイル解析を行うには、半価幅や形状を正 確に測定する必要がある。留意すべき測定条件は回折角の ステップサイズと積算強度である。ステップサイズを大きく し、積算強度を小さくすると測定時間は短くなるが、それら が過度になると回折ピークの形状は十分に再現されなくな る。逆に、ステップサイズを小さくしすぎる、または積算強 度を大きくしすぎれば、無駄に長い測定時間となる。Fig.4は Al₂O₃粉末の113反射について、ステップサイズを変えた際

Fig.2 The calculated FWHM of the 220 reflection of austenite stainless steel as a function of dislocation density. The FWHM is convoluted with the instrumental FWHM obtained from the diffraction peaks of the standard LaB_6 powder.

Fig.3 Comparison of diffraction peaks of the 220 reflection of annealed copper and the 311 reflection of the standard LaB $_6$ powder.

の半価幅∆Kの変化である。ステップサイズを回折ピークの 半価幅の1/5より大きくすると、観測される∆Kは大きく見 積もられてしまう。このためステップサイズは半価幅の1/5 以下、たとえば1/8~1/10程度で測定することが望ましい。ま た、Fig.5は積算強度を変えて測定した結果である。積算され たピークトップ強度が3,000カウントを下回ると半価幅ΔK にばらつきが生じる。また、ピーク形状への影響を確認する ため回折ピークに対しVoigt 関数 (Gauss 関数とLorentz 関 数のコンボリューション関数)をフィットし、Voigt 関数の パラメータであるGauss関数, Lorentz関数のピーク幅変数 $w_{Gauss}, w_{Lorentz}$ を求めた結果をFig.5中に示す。3,000カウント を下回ると w_{Gauss} , $w_{Lorentz}$ のばらつきが大きくなる。したがっ て、ピーク強度は3,000カウント以上で測定する必要がある。 なお、このカウント条件はバックグラウンドがほとんどない 回折パターンに適用される。試料からの蛍光X線発生により バックグラウンドが高くなる場合、バックグラウンドノイズ が大きくなる。この影響により回折ピークに対するS/N比が 低下する。その場合、少なくても10,000カウントの積算強度 で測定することが望ましい。

4 転位強化機構

粒径による強化機構と転位による強化機構は正確に理解されていないことが多い。たとえば、Fig.6 (a) のように応力— ひずみ曲線の流動応力をHall-Petchの粒径効果 $\sigma_{\rm HP}$ とBailey-Hirschの転位効果 $\sigma_{\rm BH}$ の加算として考えられることがある。

$$\sigma = \sigma_0 + \sigma_{\rm HP} + \sigma_{\rm BH} = \sigma_0 + \frac{k_{\rm HP}}{\sqrt{D}} + M_{\rm T} \alpha G b \sqrt{\rho} \qquad (2)$$

ここで、 σ_0 , *D*, $k_{\rm HP}$ はそれぞれ摩擦応力、粒径、Hall-Petch係数である。また、 $M_{\rm T}$, α , *G*, *b*, ρ はそれぞれTaylor因子、転位強化係数、剛性率、バーガースベクトルの大きさ、転位密

Fig.4 Variation of the measured FWHM of the 104 reflection of the Al₂O₃ powder with the step size of 2*θ*. The step size was varied from 1/20 to 1/2 of the FWHM.

度である。始めに述べておくが、式(2)は正しくない。一方、 金属の強化機構について、式(2)の考え方に基づく論文、発 表などを度々目にすることがある。

研究会において高木らは、転位強化に及ぼす結晶粒径の 影響を調査した^{1,3,37)}。結晶粒径が異なるフェライト鋼を圧延 し、結晶粒径による転位密度の関係を求めた。Fig.7は相当ひ ずみに対する降伏強度の変化をいくつかの粒径で測定した結 果である。結晶粒径が小さいほど降伏強度は高い。高木らは 自身が開発したラインプロファイル解析法:Direct法を利用 し、転位密度を求め、粒径と転位密度との関係をFig.8のよう

Fig.5 Dispersion of the FWHM of the 104 reflection of the Al_2O_3 powder with the variation of the peak intensity.

Fig.6 (a) Wrong and (b) correct concepts of strengthening mechanism based on the Hall-Petch and Bailey-Hirsch.

に導いた。この結果のみを見れば、転位強化と共に粒径効果 による強度上昇が生じていると考えることもできる。ただし、 Fig.9のように転位密度と降伏強度の関係として整理すると、 降伏強度は結晶粒径によらず転位密度の平方根に比例する関 係が得られている。つまり、塑性加工を与えた場合の強化機 構に粒径効果はなく、転位強化のみに依存することが示され た。これに関連し、降伏強度σ,を以下のように整理している。 ・粒内の転位密度が低く、粒界に堆積した転位による応力集

$$\sigma_{y} = \sigma_{0} + \frac{k_{\rm HP}}{\sqrt{D}} \quad \dots \tag{3}$$

中で粒界転位降伏が生じる場合:

・粒内に転位が蓄積され、粒内で絡み合った転位を運動させるのに必要な応力で降伏応力が定まる場合:

Fig.7 Relation between equivalent strain and yield stress in cold rolled specimens with various ferrite grain sizes³.

Fig.8 Relation between equivalent strain and dislocation density in cold rolled specimens with various ferrite grain sizes³⁾.

Fig.9 Relation between dislocation density and yield stress in cold-rolled specimens with various ferrite grain sizes³⁾.

 $\sigma_{\rm y} = \sigma_{\rm o} + M_{\rm T} \alpha G b \sqrt{\rho} \quad \dots \qquad (4)$

つまり、粒径、転位による強化機構としてFig.6 (a) は誤りで あり、Fig.6 (b) のように考える必要がある。

なお、結晶粒径により転位増殖が変化する理由は、主に2 つの要因が考えられる。1つは粒界でのミスフィットひずみ を緩和するために発生する転位である。粒径が小さいほど粒 界面積が増えるため、ミスフィットひずみの緩和により多く の転位が必要となる (Ashby model)³⁸⁾。もう1つの要因は、 粒径変化に伴う転位の移動距離の変化である。粒径が小さく なるにつれ転位の移動距離は短くなるが、小さな粒径で同じ 塑性ひずみを生ずるには、より多くの転位が発生し、移動距 離の積算量を大きくする必要がある (Conrad model)³⁹⁾。高 木らはこれら2つのメカニズムをもとに転位導入に関する粒 径依存性を説明している^{1,3)}。

5 透過電子顕微鏡とX線回折 それぞれから見える転位の関係

塑性変形に伴う転位運動により、たとえばセル組織などの 転位組織が形成される。では、このような転位の状態がX線 回折ラインプロファイル解析にどのように反映されるか? この課題に対し、研究会では転位配列の状態を示唆するパラ メータ:MをもとにTEMにより観察される転位組織との関 係を議論した。

転位は塑性変形と共に増殖し、そのひずみエネルギーE_{strain} を下げるよう運動する。

$$E_{\rm strain} = \frac{\mu b^2 L}{4\pi u} \ln\left(\frac{R_e}{r_0}\right) \tag{5}$$

 μ , u, L, r_0 はそれぞれ、剛性率、転位性格に関するパラ メータ、転位長、転位芯の半径である。塑性変形による転位 密度の増加はひずみエネルギーを増大させる。一方、ひずみ エネルギーの増加を緩和するため転位配列やダイポールが形 成し、ミクロひずみの場の大きさ R_e は小さくなる。このよう な R_e の変化は式 (1) に示したMを低下させる。つまり、Mの 変化をTEM観察から得られる転位組織と比較することによ り、Mから転位配列や転位組織の状態をある程度推定できる と期待される。

転位組織は一般に交差すべりの起こりやすさにより変化す るため、積層欠陥エネルギーに依存する。そこで、転位組織 観察試料には積層欠陥エネルギーの異なる316Lステンレス 鋼とNi (4N) を用いた。積層欠陥エネルギーは組成から求め る換算式や文献により変わるが、それぞれ約55,140 mJ·m⁻² である。引張変形に伴う316L鋼およびNi試料の転位組織形 成過程の観察結果をFig.10に示す。図中にはX線回折ライン プロファイル解析から求められたMおよび転位密度も記載 している。公称ひずみ ε の増加に伴い、Mは低下し、転位が 凝集する様子を確認できる。M>1では、転位は絡まり合っ ておらず、分散している。Mが1より小さくなると316L鋼、 Niのいずれにおいても cell wallの形成が始まる。Mが0.3程 度まで低下すると、転位の凝集は顕著となり、特にNiにおい てはシャープな cell wall として発達する。Fig.10のような傾 向は310S鋼でも316L鋼と同様な傾向が確認され、また交差 すべりが起こりやすいフェライト系ステンレス鋼はNiと類 似したMと転位組織の関係が確認された。 以上の結果から、 cell wallの発達や転位の凝集状態は主に積層欠陥エネルギー により大別することができ、定性的にはFig.10のようなMと 転位組織の関係をもとにラインプロファイル解析の結果から 転位組織を推定できる。

-6 走査電子顕微鏡とX線回折 それぞれから求められる転位密度

SEM-EBSD観察により求められる転位密度はGN転位を 対象とするが、X線回折ラインプロファイル解析から求めら れる転位密度はGN転位とSS転位の和:総転位密度となる。 研究会では、それぞれの手法で求められる転位密度の特徴や 意義について議論した。

EBSDのKernel Average Misorientation (KAM) をもとに 次式からGN転位密度が求められる²⁹³¹⁾。

$$\rho_{\rm GN} = \frac{A}{b} \cdot \frac{\Theta}{s} \qquad (6)$$

ここでØ, sはそれぞれ平均KAM値 (rad)、EBSD 測定のス

500 nm

Fig.10 Dislocation generation and cell structure formation of the 316 stainless steel and Ni (4N). Arrows denote cell walls.

テップサイズである。Aは傾角粒界の場合は2、ねじれ粒界の 場合は4となる。式(6)においてのはsにより規格化され、ス テップサイズに依存しない数値として転位密度が求められ ると仮定している。実際には、式(6)を用いたGN転位密度 はステップサイズにより変化してしまう。このため、妥当な GN転位密度を求めるステップサイズに関する研究報告もあ る³¹⁾。ただし、転位密度が未知の試料に対し、適切なステッ プサイズ条件を見いだすのは難しい。KamayaらはKikuchi 線解析の際に生じるnoiseが平均KAM値のバックグラウン ドとして作用することを明らかにし、次式に修正した⁴⁰⁾。

$$\rho_{\rm GN} = \frac{A}{b} \cdot \frac{\mathrm{d}\Theta}{\mathrm{d}s} \quad \dots \tag{7}$$

式(7)をもとにGN転位密度を求める場合、平均KAM値の ステップサイズに対する変化を計測する。つまり、いくつか のステップサイズでEBSD測定を行う必要がある。この作 業は手間と時間を要するため、解析的にステップサイズを 変えることで解決できる。KAM値を求める際、1次グリッド に加え、2次、3次、…グリッドを利用することによりkernel 半径を変え、仮想的にステップサイズを変えた平均KAM値 を求めることができる。Fig.11は真ひずみ0.1の引張変形を 与えたCu-2 at% Mg合金について、kernel半径を変えた平均

Fig.11 Average KAM values at different step sizes of the Cu-Mg alloy at true strain of 0.1 as a function of kernel radius⁴¹⁾.

KAM値をプロットした結果である⁴¹⁾。いくつかのステップ サイズで計測した結果であるが、ステップサイズによらず、 kernel半径に対し一定の勾配 (dの/ds) でプロットされ、ス テップサイズによらないGN転位密度が求められる。なお、 Fig.11の切片の大きさが noise であり、noise による影響のな いGN転位密度が求められることが理解できる。

Fig.12は結晶粒径を揃えたCu-2 at%A (A = Sn, Mg, Si) 固 溶型合金の引張変形試料について、X線回折、EBSDそれぞ れから転位密度を求めた結果である⁴¹⁾。引張変形に伴う加工 硬化量はCu-Sn > Cu-Mg > Cu-Siの関係にある。X線回折か ら求められる総転位密度とEBSDから求められるGN転位密 度の差がSS転位密度に相当する。固溶元素による加工硬化 量の違いを反映し、SS転位の増殖はCu-Sn > Cu-Mg > Cu-Si の関係にあるが、GN転位の増殖は固溶元素による加工硬化 の変化に作用しないことが明らかになった。

一 大 中性子回折を活用したミクロ組織 現象の追跡 現象の追跡 ロ

高温におけるミクロ組織現象を観察する場合、試料表面の 酸化が問題となる。ある程度の高真空下で高温実験を行った としてもMnなどの酸化しやすい元素は表面から酸化、脱離 する。このため、電子顕微鏡観察や通常のX線回折では高温 におけるミクロ組織の変化を追跡することは容易ではない。 一方、中性子は鉄鋼に対し高い透過性があるため、数mm厚 さの試験片で高温実験を行うことができる。このため表面酸 化の影響を無視し、回折実験を行うことができる。

J-PARC MLFのBL20 (iMATERIA) には鉄鋼の相変態や 集合組織変化の高温現象を観察するための実験系が開発さ れ、共同利用装置として産学の研究者に公開されている。 iMATERIAは試料を囲むように検出器を配列し、様々な方位 の回折パターンが一度の測定で得られる。複数の回折方位の 回折パターンが得られれば、集合組織と相分率を同時に求め る Rietveld-texture解析が可能になる。従来の回折法による 相分率解析では集合組織の影響による回折強度の変化が誤 差を誘起する懸念があったが、Rietveld-texture解析は集合組 織を積極的に解析することで信頼性の高い相分率解析が可 能となる^{35,4245)}。研究会の小貫らはiMATERIAに鉄鋼のオー

Fig.12 Variations in total dislocation density and GND density with the true strain evaluated by XRD and EBSD, respectively⁴¹⁾.

ステンパー処理を想定した急速加熱冷却装置を開発し、低合 金TRIP鋼のオーステンパー処理中の相変態過程を観察する ことに成功した⁴⁶⁾。開発した装置は赤外線加熱炉により1273 Kまで昇温可能であり、また、液体窒素により冷却したHeガ スを試料に吹き付けることで急冷することができる。

急速加熱冷却装置の適用例として、Fe-1.5Si-1.5Mn-0.15C (mass%)のオーステンパー処理中の組織変化を中性子回折 により観察した結果を示す。試料は1273 Kまで昇温した後、 973 Kまで急冷、600 s保持後、673 Kまで急冷、1800 s保持し た。Fig.13は673 K保持中のフェライト相とオーステナイト 相の回折ピークの時間変化である。673 Kに到達した時間を 0 sとしている。フェライト相の110反射のピーク位置は変化 しないが、オーステナイト相の111反射のピーク位置はおお よそ600 sまで明瞭に変化する。オーステナイ相の111反射 はFig.14に示す通り2つのピークに分離でき、格子定数が大 きい高炭素オーステナイト相と格子定数が小さい低炭素オー ステナイト相とに同定される。Fig.15は673 K保持中の高炭 素オーステナイト相と低炭素オーステナイト相の格子定数の 時間変化である。高炭素、低炭素オーステナイト相のいずれ も炭素濃度増加を示唆する格子定数の変化を確認できる。特 に、高炭素オーステナイト相の格子定数の増加は始めの600 s にて著しい。Fig.16は673 K保持中のオーステナイト相の相 分率の時間変化である。低炭素オーステナイト相の相分率は 始めの600 sにておおよそ消失する。一方、高炭素オーステナ イト相の相分率はその時間内にて増加する。以上の結果から、 低炭素オーステナイト相が分解する際、その一部が高炭素 オーステナイト相になると共に、低炭素オーステナイト相か ら高炭素オーステナイト相への炭素拡散が生じたと考えられ る。600 s以降は高炭素オーステナイト相の相分率が緩やかに 減少し、600 s以降の温度保持は有効ではないことがわかる。

Fig.13 Transitions of the diffractograms of the Fe-1.5Si-1.5Mn-0.15C alloy during austempering at 673 K.

Fig.14 Peak fitting for the 111 reflection of the austenite observed at 150, 250, and 450 s from the start of austempering at 673 K.

8 最後に

中性子やX線などの量子ビームを利用した金属組織解析に は、様々なソフトウェアを利用できるようになりつつある。た とえばラインプロファイル解析やRietveld-texture解析には それぞれCMWP⁴⁷⁾やMAUD⁴⁸⁾のソフトウェアを用いること で、容易に転位密度や相分率を求めることができる。しかし、 それら解析値は試料や測定条件に起因する様々な測定データ の偏差に影響され、また、解析手順に問題があっても何らか の数値を出してしまう。その結果、誤ったdiscussionに陥る ことになる。特に、解析理論を全く理解せずソフトウェアを ブラックボックスとしたまま利用するとそのようなミスをし がちになる。ある程度、解析理論を理解した上でソフトウェ アを利用することが望ましい。加えて、適切な実験、解析を行 うために次の点に着眼してもらいたい。

- ・回折ピークの幅を変化させるのは転位や結晶子サイズ以外 にどのような要素があるのか?
- ・相分率解析で利用する回折強度には集合組織以外にどのような因子があるのか?

それらに気を配りつつ試料を選定し、適切な測定と解析を 行うことが肝要となる。

さて、最後に本稿で紹介したiMATERIAの利用に関する紹 介を行いたい。iMATERIAを利用した中性子回折は加熱、急 冷に伴う相変態、炭素拡散の観察に加え、集合組織の変化も

Fig.15 Changes in the lattice parameters of the high-carbon and low-carbon austenite calculated by Gaussian peak fitting for 111 reflection of the austenite during austempering at 673 K.

Fig.16 Changes in austenite volume fraction of the high-carbon and low-carbon austenite during austempering at 673 K.

観察できる。加えて高温下における荷重変形中の相変態、転 位密度解析も可能である。iMATERIAを利用した金属組織解 析に関心がある場合、いばらき量子ビーム研究センター⁴⁹に お問い合わせ頂きたい。

参考文献

- 高木節雄,増村拓朗, Fulin Jiang,土山聡宏:鉄と鋼, 104 (2018), 683.
- 2)田中友基,高木節雄,土山聡宏,植森龍治:鉄と鋼,104 (2018),284.
- 3) Y.Tanaka, S.Takaki, T.Tsuchiyama and R.Uemori : ISIJ Int., 58 (2018), 1927.
- 4) 高木節雄, 土山聡宏: 鉄と鋼, 104 (2018), 53.
- 5)中川康太朗,林桃希,高野こずえ,松永裕隆,森広行,北 原周,小貫祐介,鈴木茂,佐藤成男:日本金属学会誌,84 (2020),374.

- 6) M. Moshtaghi and S. Sato : ISIJ Int., 59 (2019), 1591.
- 7)伊藤美優, 伊藤優樹, 小林敬成, 松永裕隆, 高野こず え, 牧一誠, 森広行, 鈴木茂, 佐藤成男: 銅と銅合金, 57 (2018), 18.
- 8) J. Hamada and H. Inoue: ISIJ Int., 59 (2019), 935.
- 9) E. Vakhitova, D. Sornin, J. Wright, T. Tomida and M. François : J. Mater. Sci., 55 (2020), 5600.
- T. Shinozaki, Y. Tomota, T. Fukino and T. Suzuki : ISIJ Int., 57 (2017), 533.
- Y.Tomota, Y.Wang, T.Ohmura, N.Sekido, S.Harjo, T.Kawasaki, W.Gong and A.Taniyama : ISIJ Int., 58 (2018), 2125.
- 12) 塙健太,小貫祐介,植村勇太,星川晃範,鈴木茂,大塚広明,千葉悠矢,佐藤成男:鉄と鋼,105 (2019),648.
- 13) 細谷佳弘,松村雄太,友田陽,小貫祐介,ハルヨステファ ヌス:鉄と鋼,106 (2020), 154.
- 14) T.Tomida : Acta Mater., 146 (2018), 25.
- 15) 友田陽, 関戸信彰, 徐平光, 川崎卓郎, ハルヨステファヌ ス, 田中雅彦, 篠原武尚, 蘇玉華, 谷山明: 鉄と鋼, 103 (2017), 570.
- 16) 友田陽, 佐藤成男, ステファヌス ハルヨ: 鉄と鋼, 103 (2017), 73.
- 17) F.Jiang, K.Hirata, T.Masumura, T.Tsuchiyama and S.Takaki : ISIJ Int., 58 (2018), 376.
- S. Takaki, F. Jiang, T. Masumura and T. Tsuchiyama : ISIJ Int., 58 (2018), 769.
- 19) S. Takaki, T. Masumura, F. Jiang and T. Tsuchiyama : ISIJ Int., 58 (2018), 1181.
- 20) 増村拓朗, 高木節雄, Fulin Jiang, 土山聡宏: 鉄と鋼, 104 (2018), 717.
- S.Takaki, T.Masumura and T.Tsuchiyama : ISIJ Int., 58 (2018), 2354.
- 22) 佐藤成男, 黒田あす美, 佐藤こずえ, 熊谷正芳, ステファ ヌス ハルヨ, 友田陽, 齋藤洋一, 轟秀和, 小貫祐介, 鈴木 茂: 鉄と鋼, 104 (2018), 201.
- 23) 池田義雅, 高村正人, 箱山智之, 大竹淑恵, 熊谷正芳, 鈴 木裕士: 鉄と鋼 104 (2018), 138.
- 24) 高木節雄, 増村拓朗, 土山聡宏: 鉄と鋼, 105 (2019) 648.
- S.Takaki, T.Masumura and T.Tsuchiyama : ISIJ Int., 59 (2019), 567.
- 26) 高木節雄, 増村拓朗, 土山聡宏: 鉄と鋼, 105 (2019), 998.
- 27) 増村拓朗,高木節雄,土山聡宏:鉄と鋼,106 (2020),183.
- 28) 小貫祐介, 増村拓朗, 土山聡宏, 佐藤成男, 富田俊郎, 高

木節雄:鉄と鋼, 106 (2020), 457.

- 29) M.F.Ashby : Philos. Mag., 21 (1970), 399.
- 30) 梅崎正太,村田純教,野村恭兵,久布白圭司:日本金属学 会誌,78 (2014),218.
- P.J.Konijnenberg, S.Zaefferer and D.Raabe : Acta Mater., 99 (2015), 402.
- 32) M.Wilkens : Fundamental Aspects of Dislocation Theory, Vol. II, ed. by J.A.Simmons, R.de It and R.Bullough, Natl Bur. Stand. Spec. Publ. Washington, DC, (1970), 1195.
- 33) T. Ungár, J. Gubicza, G. Ribárik and A. Borbély : J. Appl. Cryst., 34 (2001), 298.
- 34) H.-R. Wenk, L. Lutterotti and S. Vogel : Nucl. Instrum. Methods Phys. Res. Sect. A, 515 (2003), 575.
- 35) Y.Onuki, A.Hoshikawa, S.Sato, T.Ishigaki and T.Tomida : J. Mater. Sci., 52 (2017), 11643.
- 36) Y.Onuki, S.Sato, M.Nakagawa, K.Yamanaka,M.Mori, A.Hoshikawa, T.Ishigaki and A.Chiba :Quantum Beam Sci., 2 (2018), 11.
- 37) 高木節雄:日本金属学会誌, 83 (2019), 107.
- 38) M.F.Ashby : Philos. Mag., 21 (1970), 399.
- 39) H. Conrad, S. Feuersrein and L. Rice : Mater. Sci. Eng., 2 (1967), 157.
- 40) M. Kamaya : Ultramicroscopy 111 (2011), 1189.
- 41) 林桃希, 伊藤優樹, 高野こずえ, 森広行, 松永裕隆, 小貫 祐介, 鈴木茂, 佐藤成男: 銅と銅合金, 59 (2020), 70.
- 42) 平野孝史,小貫祐介,星川晃範,富田俊郎,佐藤成男:X 線分析の進歩,51 (2020),147.
- 43) D.-d.Ma, P.Yang, X.-F.Gu, Y.Onuki and S.Sato : Mater. Charact., 163 (2020), 110244.
- 44) Y. Onuki, A. Hoshikawa, S. Sato, T. Ishigaki and T. Tomida: Mater. Sci. Eng., 37 (2018), 012035.
- 45) Y. Onuki and S. Sato : Quantum Beam Sci., 4 (2020), 36.
- 46) Y. Onuki, T. Hirano, A. Hoshikawa, S. Sato and T. Tomida: Metall. Mater. Trans. A, 50 (2019), 4977.
- 47) G. Ribárik, J. Gubicza and T. Ungár : Mater. Sci. Eng. A, 387-389 (2004), 343.
- 48) L. Lutterotti, S. Matthies, H.-R. Wenk, A. J. Schultz and J. W. Richardson : J. Appl. Phys., 81 (1997), 594.
- 49) https://www.pref.ibaraki.jp/sangyo/kagaku/tyusei/bltop.html, (accessed 2021-05-03).

(2021年4月12日受付)