4258 Vol.26 (2021) No.10

A P38 B

AVITART 4T AAFI—13

MIPHA and shinyMIPHA for Use in

Materials Characterization
MR - 4SMERICAVAMEERES VAT L

PR KT R e T s SRR K T ERIR gk
i ey Zhi-Lei Wang R e BN P
Bh# #¥%  Yoshitaka Adachi

Bt KERT AR 2%t B
O bR T i ININEES
ity il Toshio Ogawa

Abstract:

As the data of materials science is rapidly increasing yearly, the data source has changed from the conventional
paper-based to online-based. Under such an environment, machine learning is drawing increasing attention for
finding certain rules from data in complex systems. As a result, materials informatics is proposed in materials
research field. Similar with the traditional mathematics, physics, and chemistry, machine learning is a basic
discipline that researchers need to master in the future. Especially for the materials researchers, it is a net
increase. In order to lower the learning hurdle as much as possible and actually utilize machine learning by
materials researchers, machine-learning systems with excellent operability are necessary. Recently, programming
languages such as Python and R that can perform machine learning easily have appeared, which makes machine
learning familiar to materials researcher.

This paper introduces two materials informatics integration systems, called MIPHA and shinyMIPHA, which
can perform various image processing and machine learning at a practical level. In detail, object detection, 2D/3D
feature extraction, mathematical feature extraction, sparse study, direct analysis, and inverse analysis will be

described for demonstrating the two systems.
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:1 > Introduction

Scientific data is doubly increased every year, which drives
the evolution of scientific methods from traditional paper
notebooks toward enormous online databases. As data volumes
increase, the ability to efficiently extract knowledge from
the huge amount of data becomes increasingly important.
Machine learning, which is an artificial intelligence approach
to analyzing data and making predictions and decisions
based on a huge data volume through various models and
algorithms, has already been successfully applied in many
scientific fields.

Because of the staggering compositional and configurational
degrees of freedom in materials, the chemical space
of materials is far from being exhausted; an enormous
number of new materials with useful properties are yet
to be discovered. Therefore, machine learning is now
attracting increasing attention in the materials research field
to explore unknown information about materials and thus
accelerate advances in materials discovery. One proposed
approach is known as materials informatics, which is
scientific and technical and seeks to establish processing—
structure—property relationships in a high-throughput,
statistically robust, and physically meaningful manner using
computational science.

This paper presents two independently developed

machine learning tools involved in the previous papers"™”

Image
recognition

Microstructure recognition using deep learning

3D
analysis

MIPHA and shinyMIPHA for Use in Materials Characterization

called Materials Genome Integration System Phase
and Property Analysis (MIPHA) and shiny Materials
Genome Integration System Phase and Property Analysis
(shinyMIPHA). The frameworks, characteristics, and
functions of MIPHA and shinyMIPHA as well as their
applications in materials characterization are demonstrated

in this paper.

<2> MIPHA% and shinyMIPHA®

2.1 Framework of MIPHA

Fig.1 shows the of functions and characteristics of
MIPHA, integrating image recognition, image processing,
2D/3D microstructure analysis, and direct and inverse
analyses. In terms of microstructure analysis, MIPHA
focuses materials’ metallurgical feature with image-
engineering-based machine learning approach, where
deep learning and Trainable Weka Segmentation (TWS)
techniques are installed for image recognition and
processing functions, respectively”. An artificial neural
network (ANN) and genetic algorithm (GA) are prepared in
direct and inverse analyses, respectively, used for property

predictions and inverse design® .

2.2 Framework of shinyMIPHA
Fig.2 shows the framework of shinyMIPHA, which is

summarized as five function divisions: image analysis,

Inverse
analysis

Direct

analysis

Microstructure extraction using machine le

arning-based image processing I

Metric analysis: (area fraction, grain size, etc.) ‘

Topological analysis (volume fraction, connectivity, branch, etc.)

Af[p]i<1

Property prediction by ANN

Inverse analysis by GA

Fig.1 Functions and characteristics of MIPHA. (reprinted from Ref. 4))
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sparse analysis, direct analysis, inverse analysis, and
options. On the basis of image natural properties such as
brightness, shinyMIPHA readily characterizes topological
features of materials’ microstructures tracking with image
similarity analysis, two-point correlation statistic, persistent
homology analysis, and mean (H) -Gauss (K) curvature
analysis?. The sparse analysis comprises the Akaike
information criterion (AIC), the Bayesian information
criterion (BIC), and the least absolute shrinkage and
selection operator (LASSO) for variable selection; principal
component analysis (PCA), kernel PCA, and Autoencoder
for dimension reduction; and K-means and self-organizing
map algorithms for cluster analysis®. In the direct analysis
function, the models of multiple regression, Gaussian
process regression, ANN, SVR, and RF with hyper-
parameter Bayesian optimization (BO) are used for property
predictions. On the basis of direct analysis models, inverse
analysis can be performed using BO, genetic algorithm
(GA), or particle swarm optimization (PSO) to explore the
potential materials’ properties as well as their corresponding
microstructure and processing variables”. The options
division provides accessibilities for creating 2D/3D random
data used for persistent homology analysis, modifying data
after variable selection, random sampling from a large-sized
dataset, and image processing features such as resizing,
cropping, binarization, conversion, rotation, and plotting
of 2D/3D/4D graphs.

Application of MIPHA and

= shinyMIPHA

3.1 Design of high-performance steels with MIPHA*®

The commercial demands for highly strong and flexible
steels are growing. However, traditional experiment-based
materials research is becoming insufficient for meeting such
demands. This section demonstrates a machine-learning-
based property-to-microstructure-to-processing inverse
analysis approach used for designing high-performance
steels.

Cold-rolled (CR) low-carbon steels were studied in this
section. The chemical compositions of the raw materials
and processing parameters are detailed in Table1?.
Fig.3 illustrates the 3D microstructure of sample A10-01
reconstructed by MIPHA, which intuitively and proximately
present the real microstructure of the sample. The
quantitative microstructure information in terms of count
fraction (CF: count/total volume) and volume fraction (VF)
of the identified phase components (polygon ferrite (PF),
Widmanstatten ferrite (WF), pearlite (P), degenerated
pearlite (DP), bainite (B) and martensite (M)) is given in
Table2. The mechanical properties of tensile strength (TS)
and total elongation (tEL) estimated from the stress-strain
curves are also included.

The data contained in Table2 comprise the dataset used
for regression analysis and inverse analysis, for which ANN

and GA were employed here, respectively. An ANN model

Image
analysis

analysis

Direct
analysis

Inverse
analysis

Options

Fig.2 Functions and characteristics of shinyMIPHA. (reprinted from Ref. 5))

618 |

14



MIPHA and shinyMIPHA for Use in Materials Characterization

Tablel Chemical compositions and processing conditions of the used steels. (reprinted from Ref. 4) )
Steel Chemical composition (wt.%, N, O: ppm) Process
A10-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR— annealed at 1000°C for 5 s— cooling at 1°C/s
A10-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR—> annealed at 1000°C for 5 s— cooling at 3°C/s
A10-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR—> annealed at 1000°C for 5 s— cooling at 10°C/s
A10-30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR— annealed at 1000°C for 5 s— cooling at 30°C/s
Al4-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR— annealed at 1400°C for 5 s— cooling to 1000°C at 50°C/s — cooling at 1°C/s
A14-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR—> annealed at 1400°C for 5 s— cooling to 1000°C at 50°C/s — cooling at 3°C/s
Al4-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR— annealed at 1400°C for 5 s— cooling to 1000°C at 50°C/s — cooling at 10°C/s
Al14-30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027A1-18N-280 CR— annealed at 1400°C for 5 s— cooling to 1000°C at 50°C/s — cooling at 30°C/s
B10-01 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193M0-0.028A1-2IN-210 CR— annealed at 1000°C for 5 s— cooling at 1°C/s
B10-03 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193M0-0.028A1-21N-210 CR—> annealed at 1000°C for 5 s— cooling at 3°C/s
B10-10 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo0-0.028A1-21N-210 CR— annealed at 1000°C for 5 s— cooling at 10°C/s
B10-30 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193M0-0.028A1-21N-210 CR—> annealed at 1000°C for 5 s— cooling at 30°C/s

Fig.3 Reconstructed 3D microstructure of sample A10-01. (reproduced from Ref. 4))

Table2 Mechanical properties and material genomes of the used steels. (reprinted from Ref. 6) )

Steel YS(MPa) TS(MPa) tEL(%) CFPF CFP CFWF _ CFDP CFB CFM VFPF VFP VFWF  VFDP VFB VFM
A10-01 323 481 80.6  3.30E-05 5.16E-05 0.000165 1.83E-05 0 0 0.4047 02005 0.0845  0.3104 0 0
A10-03 308 489 764  5.43E-05 9.07E-05 1.28E-06 9.24E-05 0 0 0.2608 0.118 0.5537  0.0674 0 0
A10-10 390 591 71.1  5.17E-05 0.000136 0.000126 0 1.54E-06 0 0.1836  0.0452  0.1414 0 0.6297 0
A10-30 444 663 63.9  B8.63E-05 0 0.00027 0 9.26E-07 4.42E-05 0.1576 0 0.0842 0 0.5765  0.1817
A14-01 353 516 644  7.67E-05 5.15E-05 4.04E-06 3.21E-05 5.30E-06 0 0.1573  0.0212  0.3938 0.0379  0.3897 0
A14-03 412 561 67.5  4.40E-05 4.67E-05 3.12E-05 5.94E-05 5.93E-06 0 0.0808 0.0143 02572 0.1232  0.5245 0
Al4-10 521 688 61.5 0 2.27E-05 0 0 1.08E-05 1.73E-05 0 0.0094 0 0 0.6249  0.3657
Al14-30 620 807 60.7 0 0 0 0 0 3.00E-05 0 0 0 0 0 1
B10-01 375 550 70.4  0.002244 0.000637 0.001005 0 0 0 0.373652 0.06523 0.561117 0 0 0
B10-03 434 600 66.3 0.00325 0.000344 0.005683 0 0.000477 0 0.109254 0.006947 0.022508 0 0.861291 0
B10-10 483 691 61.5  0.000185 0.000215 0 0 2.76E-05 0 0.118045 0.006877 0 0 0.875078 0
B10-30 489 725 58.4 0 0 0 0 7.43E-05 1.52E-07 0 0 0 0 0.160882 0.839118
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with two objective variables of TS and tEL was established,
as schemed in Fig.4%. A maximum search of TS x tEL
was subsequently conducted, and the explored results
are shown in Table3. The results indicate that a potential
balanced property TS x tEL value of 65105.7 requires higher
phase fractions of M, B and WF. Moreover, the inverse
analysis also semi-quantitatively provides the chemical
composition and processing conditions corresponding to the
potential properties. Fig.5 clearly shows the relationships

between the experimental design and data-driven design.

3.2 Design of high-performance thermoelectric
materials shinyMIPHA”
The traditional experimental research is generally

carried out using a trial-and error method, by which a

material is designed from given chemical composition
and processing conditions, followed by evaluation of
microstructure and properties. In addition to being
time-consuming, such procedures highly depend on the
experiences and knowledge of the researchers, which can
easily underestimate the materials’ characteristics. Since
substantial progress tends to require a combination of
chemical intuition and serendipity, traditional experiment-
based methods appear to be increasingly insufficient
for designing new materials with desired properties. In
this section, the machine-learning-based data-driven
approach was applied to hot-extruded Cu,Bi,Te,gs.,S€ 5
thermoelectric materials, where the relationships among
composition, processing, microstructure, and properties

were further understood.

LA XN N J
‘ °c ° e

TS X tEL

Fig.4 Schematic of the properties-to-microstructure-to-processing inverse analysis. ATemp and CRate denote the
austenizing temperature and cooling rate. (reproduced from Ref. 6))

Table3 Inversely explored properties, microstructure, and processing. (reprinted from Ref. 6) )

ATemp (°C) __ CRate (°Cls) © Si Mn S Mo Al N 0 CFPF CFP__ CFWF
1344 21.30 0.1519 00146 15132 000169 0.00772  0.02786 18.8 221 0.00234  0.00056 0.00215
CFDP CFB CFM VEPF VFP VEWE  VFDP VFB VEM TS (MPa) tEL (%) TS X tEL

2.03E-05 0.00044 433E-05  0.03958  0.08736  0.21455  0.09936 _ 0.38128  0.17784 _ 808.278  80.5486 65105.7

@ Experimental 4 Explored
100 —
90 | Tl
S g0 foon. @ Tl Bgor
5 L e T Pgugy
£ 70 | e ey e ’WF+B+M
g 110y 2~ 1005 Y0 g e
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= C/S;Pp+ -l Pryp 0149 oc“--~-~i_3f’°C/s, B
s 50 | WF+B - \‘IYE» B 0'5:30_0 s T
= oS srB*M»\__
40 T
30 1 1 1 1 1 1 1 1 1
400 450 500 550 600 650 700 750 800 850 900
Tensile strength (MPa)

Fig.5 Relationships between the experimental design and data-driven design. (reproduced from Ref. 6))
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Materials design often involves multiple covariant
variables in terms of composition and processing, which
is a challenge for the experiment-based method to
thoroughly understand the materials paradigm. Here, the
sparse algorithm of principal component analysis (PCA)
was employed to characterize the influence of multiple
composition and processing variables. The raw data
tracking with the processing, composition, microstructure,
and properties of Cu,Bi,Te,g;.,Se, 5 materials used in this
section are provided in Ref. 7). Fig.6 shows the PCA map
expressed by PC1 and PC2, demonstrating the relationships
among temperature, Te content, Cu content, and Cu
particle size, microstructure, and properties. According to
the Euclidean distance, temperature and Cu content were
shown to have remarkable influences on the microstructure
and properties, whereas the influences of Cu particle size
and Te content were small. These results suggest that
temperature and Cu content are two priority parameters
in processing design of Cu,Bi,Te,ss.,Se, ;5 thermoelectric

materials.
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Regression analysis was conducted using ANN, followed
by predictions of property index of themoelectric materials
(figure of merit ZT), as shown in Fig.7. The results
demonstrated that the experimental and predicted ZT well
matched with each other, suggesting a capability of the
present model to describe underlying data. On the basis

of the ANN model, an inverse analysis was performed

O Temperature

<+ - O Te content

O Cu content (1 pm)
O Cu content (45 ym)

RiD

Fig.6 A principle component map demonstrating the primary variance
of the observations by their PC1 and PC2. (reprinted from Ref. 7))
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Fig.7 Experimental and predicted ZT values. The predictions were made by ANN model under different processing variables of (a) extrusion
temperature, (b) Te content, (c) Cu content (45 pm), and (d) Cu content (1 um). (reprinted from Ref. 7))
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using GA with a maximum ZT value search. Table4 gives
the inversely explored results with respect to the potential
properties and their corresponding microstructure,
composition and processing. The inverse analysis indicates
that the Cu,Bi,Te, ., Se ;s materials have a potential best
ZT value of 1.15, which is 1.32 times larger than the best
experimental value. In materials design, the optimal
ZT requires processing variables of higher extrusion
temperature and larger Cu content and microstructure

variables of higher density and larger average grain size.

3.3 Property predictions using persistent homology
analysis with shinyMIPHA®
The current microstructural descriptors tracking with
properties of interest are primarily in terms of metallurgical
features, e.g., grain size, texture, and area/volume

fraction, which often ignore the complexities of the

microstructure’s geometry and thus easily underestimate
materials’ properties. In addition, the materials’
microstructure is generally quantified using stereological
measurements, which highly rely on the prior metallurgical
knowledge of an expert to recognize and identify certain key
microstructural features in advance. Such characterizations
often result in significant bias and individual errors. In
this section, persistent homology was demonstrated to
characterize topological microstructure features of the DP
steel samples, followed by predictions of stress — strain
curves using a machine-learning model of ANN. In addition,
the correlations between stress and microstructure
descriptor of persistent images are estimated using
sensitivity analysis, Bayesian information criterion (BIC),
and the least absolute shrinkage and selection operator
(LASSO) respectively.

Fig.8 illustrates the persistent homology analysis

Table4 Inversely explored results by GA, where T, Cu, CuSize, D, d, iy, a, and k denote the temperature, Cu content, Cu particle size,
relative density, average grain size, mobility, Seebeck coefficient, and thermal conductivity, respectively. (reprinted from Ref. 7))

T Cu CuSize D d u a K T
GA 437 0.07 9.1 1.046 0.94 204.702 -219.108 0.772 1.15
Exp. 400 0.05 45 0.931 0.75 156.6 -177 0.93 0.86

(®)
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Fig.8 Persistent homology analysis for a DP sample: (a) a binary image with 480 x 360 pixels; (b) a persistent diagram estimated from a
space containing 50 x 37.5 pixels resized from (a); and (c) the kernel density map for the h+ feature in a persistent diagram. (reprinted

from Ref. 8))
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results of a DP sample. Fig.8 (a) shows the binary image,
where the ferrite and martensite are highlighted by white
and black contrast, respectively. Fig.8 (b) shows the
persistent diagram for the martensite. Two features were
identified: %, is a ring existing in a certain martensite
island, and %, is a potential ring among the martensite
islands. A unique quality of persistent homology is that it
can capture meaningful underlying topological features.
Thus, the %, ring feature was estimated to accounting for
the microstructure. Fig.8 (c) shows the kernel density
map demonstrating the distribution of the %, feature in
the persistent diagram. The microstructure descriptor of
persistent image (PI) was estimated based on the persistent
diagram and kernel density” .

Since the source data of PI (given in Ref. 8)) possesses
a dimension of 2500, PCA was thereby employed to
reduce the dimension of the dataset, by which 7 PCs
were identified sufficient for interpreting the original
observations. Thus, 7 PCs, strain, and stress comprise the
the dateset for regression analysis by ANN. Fig.9 shows
the regression analysis results. The fitted ANN model
exhibited satisfactory accuracies for both the training and

testing datasets, as shown in Fig.9 (a). Fig.9 (b) illustrates

MIPHA and shinyMIPHA for Use in Materials Characterization

experimental and ANN-predicted stress — strain curves.
The experimental and predicted curves nearly coincide,
indicating a good prediction performance of the present
model.

Sensitivity analysis® was conducted to identify the
correlation between stress and PI based on the neural
network shown in Fig.9 (c). Red and blue colors express
positive and negative sensitivity, respectively, and a wider
connection line expresses a high degree of sensitivity. The
quantitative sensitivity degrees of the objective variable
to each explanatory variable are given in Fig.3 (d). The
results show that true strain is the most sensitive factor to
true stress with a sensitivity degree of 3.6464, whereas the
total sensitivity degree of PCs reaches 4.1777, suggesting
a strong correlation between true stress and PI. In
addition, PC1 and PC7 exhibit relatively high degrees of
sensitivity, indicating that true stress is most sensitive
to the microstructure information contained in these two
components, followed by PC5, PC6, and the weak factors
of PC2, PC3, and PC4.

LASSO and BIC? were further carried out to identify
the correlations between the objective and explanatory

variables. As shown in Fig.10, LASSO estimation

~
()

p—
2

| RMSE(train)=0.0539

RMSE(test)=0.1062

| C.C.(train)=0.9985
C.C.(test)=0.9948
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( C) True stress
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Y]
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PC3 0.3350
PC4 0.2427
PC5 0.5364
PC6 0.4734
PC7 1.1136
True strain 3.6461

Fig.9 Regression analysis using ANN: (a) accuracy of the fitted model; (b) experimental and ANN-predicted stress—strain curves; (c)
network of the ANN model; and (d) quantitative sensitivity degree of the explanatory variables. (reprinted from Ref. 8))
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Fig.10 Regularization parameter (/og(A)) dependences of the (a)
mean square error and (b) regression coefficient estimated
by LASSO. (reprinted from Ref. 8))

demonstrates that true strain exhibits the largest absolute
value of coefficient, followed by PC7, PC1, PC5, and PC6
at the threshold (right dashed line), and the coefficients
of weak correlations PC2, PC3, and PC4 are constrained
to 0. BIC estimation identifies a relationship between the
stress and the explanatory variables as BIC,,,true stress ~
0.7405true strain + 0.4320PC7 + 0.4024PC1 - 0.2597PC5 -
0.2002PCé6.

The above three sparse studies demonstrate similar
correlations between the objective and explanatory
variables, indicating that the microstructure descriptor
PI is capable of interpreting properties. Here, present
persistent homology presents a route for characterizing
materials’ microstructure in geometry, which is capable of
complementing the deficiencies in the metallurgical-feature-

based microstructure characterization. Furthermore,

624 |
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combined with image similarity analysis®, an inverse
analysis approach based on persistent homology is under
development, so as to explore the microstructure and
processing conditions that track with a desired property.
The proposed approach is aimed to reduce the dependence
of the aforementioned stereological measurements and thus

accelerate materials discovery process.

<4) Summary

In response to increasing demand for the highly efficient
design of new materials, friendly and efficient machine
learning facilities are becoming critical for applying
artificial intelligence to materials research community. This
paper introduces two independently developed machine
learning tools, whose frameworks and functions have been
demonstrated in terms of property predictions and inverse
design. The developed machine learning tools and related
work involved are expected to provide new persepective for

promoting the materials research.
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