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Abstract:
As the data of materials science is rapidly increasing yearly, the data source has changed from the conventional 

paper-based to online-based. Under such an environment, machine learning is drawing increasing attention for 

finding certain rules from data in complex systems. As a result, materials informatics is proposed in materials 

research field. Similar with the traditional mathematics, physics, and chemistry, machine learning is a basic 

discipline that researchers need to master in the future. Especially for the materials researchers, it is a net 

increase. In order to lower the learning hurdle as much as possible and actually utilize machine learning by 

materials researchers, machine-learning systems with excellent operability are necessary. Recently, programming 

languages such as Python and R that can perform machine learning easily have appeared, which makes machine 

learning familiar to materials researcher.

This paper introduces two materials informatics integration systems, called MIPHA and shinyMIPHA, which 

can perform various image processing and machine learning at a practical level. In detail, object detection, 2D/3D 

feature extraction, mathematical feature extraction, sparse study, direct analysis, and inverse analysis will be 

described for demonstrating the two systems.

要旨
材料科学のデータが年々急激に増加しており、そのデータの提供方法も従来の紙ベースからオンラインに変更

されつつある。この環境の中で、複雑系におけるデータから一定のルールを見出す手法として機械学習に注目が集
まっている。この研究分野は今日ではマテリアルズインフォマティクスと呼ばれている。機械学習は、従来の数学、
物理、化学と同様に、今後研究者が修得しておく必要がある基礎学問と言え、材料工学を学ぶ者にとってはこれを
修得することは純増である。その学習のハードルを少しでも下げ、実際に材料研究者が活用するためには、操作性
に優れるシステムが用意されていることが必要と思われる。昨今ではpythonやRといった比較的容易に機械学習
が行えるプログラミング言語が登場しており、材料研究者にも機械学習が身近になってきている。

本稿では、実用レベルで様々な画像処理、機械学習を行える二つの材料情報統合システムMIPHAとshinyMIPHA

について紹介する。具体的には、画像の物体検出、2D3D特徴量抽出、数学的特徴量抽出、スパース学習、順解析、逆
解析を行うシステムについてその特徴を説明する。
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 1 Introduction
 

Scientific data is doubly increased every year，which drives 

the evolution of scientific methods from traditional paper 

notebooks toward enormous online databases. As data volumes 

increase，the ability to ef ficiently extract knowledge from 

the huge amount of data becomes increasingly important. 

Machine learning，which is an artificial intelligence approach 

to analyzing data and making predictions and decisions 

based on a huge data volume through various models and 

algorithms，has already been successfully applied in many 

scientific fields. 

Because of the staggering compositional and configurational 

degrees of freedom in materials，the chemical space 

of materials is far from being exhausted; an enormous 

number of new materials with useful properties are yet 

to be discovered. Therefore，machine learning is now 

attracting increasing attention in the materials research field 

to explore unknown information about materials and thus 

accelerate advances in materials discovery. One proposed 

approach is known as materials informatics，which is 

scientific and technical and seeks to establish processing–

structure–property relationships in a high-throughput，
statistically robust，and physically meaningful manner using 

computational science.

This paper presents two independently developed 

machine learning tools involved in the previous papers1-3） 

called Materials Genome Integration System Phase 

and Proper ty Analysis （MIPHA） and shiny Materials 

Genome Integration System Phase and Property Analysis 

（shinyMIPHA）．The frameworks，characteristics，and 

functions of MIPHA and shinyMIPHA as well as their 

applications in materials characterization are demonstrated 

in this paper.

 2 MIPHA4） and shinyMIPHA5）

2.1　Framework of MIPHA
Fig.1 shows the of functions and characteristics of 

MIPHA，integrating image recognition，image processing，
2D/3D microstructure analysis，and direct and inverse 

analyses. In terms of microstructure analysis，MIPHA 

focuses materialsʼ metallurgical feature with image-

engineering-based machine learning approach，where 

deep learning and Trainable Weka Segmentation （TWS） 

techniques are installed for image recognition and 

processing functions，respectively1）．An artificial neural 

network （ANN） and genetic algorithm （GA） are prepared in 

direct and inverse analyses，respectively，used for property 

predictions and inverse design3）.

2.2　Framework of shinyMIPHA
Fig.2 shows the framework of shinyMIPHA，which is 

summarized as five function divisions: image analysis，

Fig.1　Functions and characteristics of MIPHA. （reprinted from Ref. 4）） 

13

MIPHA and shinyMIPHA for Use in Materials Characterization

617



sparse analysis，direct analysis，inverse analysis，and 

options. On the basis of image natural properties such as 

brightness，shinyMIPHA readily characterizes topological 

features of materialsʼ microstructures tracking with image 

similarity analysis，two-point correlation statistic，persistent 

homology analysis，and mean （H）–Gauss （K） curvature 

analysis2）．The sparse analysis comprises the Akaike 

information criterion （AIC），the Bayesian information 

criterion （BIC），and the least absolute shrinkage and 

selection operator （LASSO） for variable selection; principal 

component analysis （PCA），kernel PCA，and Autoencoder 

for dimension reduction; and K-means and self-organizing 

map algorithms for cluster analysis3）．In the direct analysis 

function，the models of multiple regression，Gaussian 

process regression，ANN，SVR，and RF with hyper-

parameter Bayesian optimization （BO） are used for property 

predictions. On the basis of direct analysis models，inverse 

analysis can be performed using BO，genetic algorithm 

（GA），or particle swarm optimization （PSO） to explore the 

potential materialsʼ properties as well as their corresponding 

microstructure and processing variables3）．The options 

division provides accessibilities for creating 2D/3D random 

data used for persistent homology analysis，modifying data 

after variable selection，random sampling from a large-sized 

dataset，and image processing features such as resizing，
cropping，binarization，conversion，rotation，and plotting 

of 2D/3D/4D graphs.

 3  Application of MIPHA and 
shinyMIPHA

3.1　Design of high-performance steels with MIPHA4,6）

The commercial demands for highly strong and flexible 

steels are growing. However，traditional experiment-based 

materials research is becoming insufficient for meeting such 

demands. This section demonstrates a machine-learning-

based property-to-microstructure-to-processing inverse 

analysis approach used for designing high-performance 

steels.

Cold-rolled （CR） low-carbon steels were studied in this 

section. The chemical compositions of the raw materials 

and processing parameters are detailed in Table1 4）．
Fig.3 illustrates the 3D microstructure of sample A10-01 

reconstructed by MIPHA，which intuitively and proximately 

present the real microstr ucture of the sample. The 

quantitative microstructure information in terms of count 

fraction （CF: count/total volume） and volume fraction （VF） 

of the identified phase components （polygon ferrite （PF），
Widmanstatten ferrite （WF），pearlite （P），degenerated 

pearlite （DP），bainite （B） and martensite （M）） is given in 

Table2. The mechanical properties of tensile strength （TS） 

and total elongation （tEL） estimated from the stress-strain 

curves are also included. 

The data contained in Table2 comprise the dataset used 

for regression analysis and inverse analysis，for which ANN 

and GA were employed here，respectively. An ANN model 

Fig.2　Functions and characteristics of shinyMIPHA. （reprinted from Ref. 5）） 
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Table2　Mechanical properties and material genomes of the used steels. （reprinted from Ref. 6）） 

Table1　Chemical compositions and processing conditions of the used steels. （reprinted from Ref. 4）） 

Fig.3　Reconstructed 3D microstructure of sample A10-01. （reproduced from Ref. 4）） 
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with two objective variables of TS and tEL was established，
as schemed in Fig.4 6）．A maximum search of TS × tEL 

was subsequently conducted，and the explored results 

are shown in Table3. The results indicate that a potential 

balanced property TS × tEL value of 65105.7 requires higher 

phase fractions of M，B and WF. Moreover，the inverse 

analysis also semi-quantitatively provides the chemical 

composition and processing conditions corresponding to the 

potential properties. Fig.5 clearly shows the relationships 

between the experimental design and data-driven design.

3.2　 Design of high-performance thermoelectric 
materials shinyMIPHA7）

The traditional experimental research is generally 

carried out using a trial-and error method，by which a 

material is designed from given chemical composition 

and processing conditions，followed by evaluation of 

microstr ucture and proper ties. In addition to being 

time-consuming，such procedures highly depend on the 

experiences and knowledge of the researchers，which can 

easily underestimate the materialsʼ characteristics. Since 

substantial progress tends to require a combination of 

chemical intuition and serendipity，traditional experiment-

based methods appear to be increasingly insuf ficient 

for designing new materials with desired properties. In 

this section，the machine-learning-based data-driven 

approach was applied to hot-extruded CuxBi2Te2.85+ySe0.15 

thermoelectric materials，where the relationships among 

composition，processing，microstructure，and properties 

were further understood.

Fig.5　Relationships between the experimental design and data-driven design. （reproduced from Ref. 6））

Fig.4　 Schematic of the properties-to-microstructure-to-processing inverse analysis. ATemp and CRate denote the 
austenizing temperature and cooling rate.  （reproduced from Ref. 6））

Table3　Inversely explored properties, microstructure, and processing. （reprinted from Ref. 6）） 
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Materials design often involves multiple covariant 

variables in terms of composition and processing，which 

is a challenge for the experiment-based method to 

thoroughly understand the materials paradigm. Here，the 

sparse algorithm of principal component analysis （PCA） 

was employed to characterize the influence of multiple 

composition and processing variables. The raw data 

tracking with the processing，composition，microstructure，
and properties of CuxBi2Te2.85+ySe0.15 materials used in this 

section are provided in Ref. 7）．Fig.6 shows the PCA map 

expressed by PC1 and PC2，demonstrating the relationships 

among temperature，Te content，Cu content，and Cu 

particle size，microstructure，and properties. According to 

the Euclidean distance，temperature and Cu content were 

shown to have remarkable influences on the microstructure 

and properties，whereas the influences of Cu particle size 

and Te content were small. These results suggest that 

temperature and Cu content are two priority parameters 

in processing design of CuxBi2Te2.85+ySe0.15 thermoelectric 

materials.

Regression analysis was conducted using ANN，followed 

by predictions of property index of themoelectric materials 

（figure of merit ZT），as shown in Fig.7. The results 

demonstrated that the experimental and predicted ZT well 

matched with each other，suggesting a capability of the 

present model to describe underlying data. On the basis 

of the ANN model，an inverse analysis was performed 

Fig.6　 A principle component map demonstrating the primary variance 
of the observations by their PC1 and PC2. （reprinted from Ref. 7）） 

Fig.7　 Experimental and predicted ZT values. The predictions were made by ANN model under different processing variables of （a） extrusion 
temperature, （b） Te content, （c） Cu content （45 µm）, and （d） Cu content （1 µm）. （reprinted from Ref. 7）） 
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using GA with a maximum ZT value search. Table4 gives 

the inversely explored results with respect to the potential 

proper ties and their corresponding microstructure，
composition and processing. The inverse analysis indicates 

that the CuxBi2Te2.85+ySe0.15 materials have a potential best 

ZT value of 1.15，which is 1.32 times larger than the best 

experimental value. In materials design，the optimal 

ZT requires processing variables of higher extrusion 

temperature and larger Cu content and microstructure 

variables of higher density and larger average grain size.

3.3　 Property predictions using persistent homology 
analysis with shinyMIPHA8）

The current microstructural descriptors tracking with 

properties of interest are primarily in terms of metallurgical 

features，e.g.，grain size，texture，and area/volume 

fraction，which often ignore the complexities of the 

microstructureʼs geometry and thus easily underestimate 

materia ls ʼ  proper t ies .  In addit ion，the materia ls ʼ 
microstructure is generally quantified using stereological 

measurements，which highly rely on the prior metallurgical 

knowledge of an expert to recognize and identify certain key 

microstructural features in advance. Such characterizations 

often result in significant bias and individual errors. In 

this section，persistent homology was demonstrated to 

characterize topological microstructure features of the DP 

steel samples，followed by predictions of stress－strain 

curves using a machine-learning model of ANN. In addition，
the correlations between stress and microstr ucture 

descriptor of persistent images are estimated using 

sensitivity analysis，Bayesian information criterion （BIC），
and the least absolute shrinkage and selection operator 

（LASSO） respectively.

Fig.8 illustrates the persistent homology analysis 

Table4　 Inversely explored results by GA, where T, Cu, CuSize, D, d, µ, α, and κ denote the temperature, Cu content, Cu particle size, 
relative density, average grain size, mobility, Seebeck coefficient, and thermal conductivity, respectively. （reprinted from Ref. 7）） 

Fig.8　 Persistent homology analysis for a DP sample: （a） a binary image with 480 × 360 pixels; （b） a persistent diagram estimated from a 
space containing 50 × 37.5 pixels resized from （a）; and （c） the kernel density map for the h1 feature in a persistent diagram. （reprinted 
from Ref. 8）） 
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results of a DP sample. Fig.8（a） shows the binary image，
where the ferrite and martensite are highlighted by white 

and black contrast，respectively. Fig.8（b） shows the 

persistent diagram for the martensite. Two features were 

identified: h0 is a ring existing in a cer tain martensite 

island，and h1 is a potential ring among the martensite 

islands. A unique quality of persistent homology is that it 

can capture meaningful underlying topological features. 

Thus，the h1 ring feature was estimated to accounting for 

the microstructure. Fig.8（c） shows the kernel density 

map demonstrating the distribution of the h1 feature in 

the persistent diagram. The microstructure descriptor of 

persistent image （PI） was estimated based on the persistent 

diagram and kernel density2）.

Since the source data of PI （given in Ref. 8）） possesses 

a dimension of 2500，PCA was thereby employed to 

reduce the dimension of the dataset，by which 7 PCs 

were identified suf ficient for interpreting the original 

observations. Thus，7 PCs，strain，and stress comprise the 

the dateset for regression analysis by ANN. Fig.9 shows 

the regression analysis results. The fitted ANN model 

exhibited satisfactory accuracies for both the training and 

testing datasets，as shown in Fig.9（a）．Fig.9（b） illustrates 

experimental and ANN-predicted stress－strain curves. 

The experimental and predicted curves nearly coincide，
indicating a good prediction performance of the present 

model. 

Sensitivity analysis3） was conducted to identify the 

correlation between stress and PI based on the neural 

network shown in Fig.9（c）．Red and blue colors express 

positive and negative sensitivity，respectively，and a wider 

connection line expresses a high degree of sensitivity. The 

quantitative sensitivity degrees of the objective variable 

to each explanatory variable are given in Fig.3（d）．The 

results show that true strain is the most sensitive factor to 

true stress with a sensitivity degree of 3.6464，whereas the 

total sensitivity degree of PCs reaches 4.1777，suggesting 

a strong correlation between tr ue stress and PI. In 

addition，PC1 and PC7 exhibit relatively high degrees of 

sensitivity，indicating that true stress is most sensitive 

to the microstructure information contained in these two 

components，followed by PC5，PC6，and the weak factors 

of PC2，PC3，and PC4.

LASSO and BIC3） were further carried out to identify 

the correlations between the objective and explanatory 

variables.  As shown in Fig.10，LASSO est imation 

Fig.9　 Regression analysis using ANN: （a） accuracy of the fitted model; （b） experimental and ANN-predicted stress–strain curves; （c） 
network of the ANN model; and （d） quantitative sensitivity degree of the explanatory variables. （reprinted from Ref. 8）） 
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demonstrates that true strain exhibits the largest absolute 

value of coefficient，followed by PC7，PC1，PC5，and PC6 

at the threshold （right dashed line），and the coefficients 

of weak correlations PC2，PC3，and PC4 are constrained 

to 0. BIC estimation identifies a relationship between the 

stress and the explanatory variables as BICmintrue stress ～ 

0.7405true strain + 0.4320PC7 + 0.4024PC1 – 0.2597PC5 − 

0.2002PC6. 

The above three sparse studies demonstrate similar 

correlations between the objective and explanator y 

variables，indicating that the microstructure descriptor 

PI is capable of interpreting properties. Here，present 

persistent homology presents a route for characterizing 

materialsʼ microstructure in geometry，which is capable of 

complementing the deficiencies in the metallurgical-feature-

based microstructure characterization. Fur thermore，

combined with image similarity analysis2），an inverse 

analysis approach based on persistent homology is under 

development，so as to explore the microstructure and 

processing conditions that track with a desired property. 

The proposed approach is aimed to reduce the dependence 

of the aforementioned stereological measurements and thus 

accelerate materials discovery process.

 4 Summary

In response to increasing demand for the highly efficient 

design of new materials，friendly and ef ficient machine 

learning facilities are becoming critical for applying 

artificial intelligence to materials research community. This 

paper introduces two independently developed machine 

learning tools，whose frameworks and functions have been 

demonstrated in terms of property predictions and inverse 

design. The developed machine learning tools and related 

work involved are expected to provide new persepective for 

promoting the materials research.
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Fig.10　 Regularization parameter （ log（λ）） dependences of the （a） 
mean square error and （b） regression coefficient estimated 
by LASSO. （reprinted from Ref. 8）） 
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