

Fe-Cr-Nb-Mo系フェライト合金における 金属間化合物析出と高温酸化との相互効果

Precipitation of Intermetallic Phases and Mutual Effects with High Temperature Oxidation in the Fe-Cr-Nb-Mo Ferrite Alloys

東京工業大学 木村好里 材料系 物質理工学院 教授 Yoshisato Kimura 東京工業大学 Yaw Wang Chai

東京工業大学 波這 物質理工学院 材料系 助教 Manabu Watanabe

 \sim はじめに

CO2温室効果ガスの実質排出量を2050年までにゼロにす るカーボンニュートラルを実現するために、世界では脱炭素 化そして水素化への転換が迫られている。社会基盤材料とし て我々の豊かな暮らしを支えている鉄鋼材料に対しても、そ の製造プロセスから利活用方法、新規用途開発に至るまで、 変化を恐れない新たな挑戦が求められている。

材料系

研究員

物質理工学院

ステンレス鋼は表面に形成する化学的安定性の高い緻密 なクロミナCr2O3被膜により優れた耐食性を示し、高い熱伝 導率および低い熱膨張係数を特徴とするフェライト系は、高 温強度に優れるオーステナイト系と棲み分けることで、例え ば、火力発電のスチーム配管、自動車エンジンのエグゾース ト・マニフォールドなどの耐熱構造用途に幅広く使用されて いる¹⁴⁾。高温での使用中に析出して粗大化するLaves相が機 械的性質を劣化させることが知られており、析出挙動と高温 特性の関係が調べられている⁵¹⁴⁾。一方で、Laves相を積極的 に析出制御して活用する試みもあり¹⁵⁻¹⁸⁾、例えばオーステナ イト系ステンレス鋼の粒界をLaves相で被覆することにより 耐クリープ特性を向上できる技術が報告されている^{17,18)}。近 年では、フェライト系ステンレス鋼の優れた材料特性、加工 性、低コストなどの優位性を活かして、固体酸化物形燃料電 池(SOFC: Solid Oxide Fuel Cells)のセパレータ材、インター コネクタ材に用いることが提案されている¹⁹⁻²⁹⁾。CO2を直接 排出せず高効率に発電をできる SOFCは、自動車、家庭から 産業用の分散電源など、様々な規模と用途に対応しながら、 水素化社会実現に向けて重要な役割を果たすと期待される。 耐熱性の考慮から SOFC セパレータ材として従来はセラミッ

クスや黒鉛が利用されてきた。SOFCの電極性能が向上して 稼働温度が低下することで、鉄鋼材料をセパレータに応用で きるようになってきた。絶縁性の高いCr2O3被膜の成長によ りセル間での接触抵抗が上昇することが課題であり、酸化ス ケール自体を改質する、α-Fe母相に析出する金属間化合物 相に着目して表面近傍における析出形態を制御するなど、接 触抵抗を改善する試みがある。

著者は典型的な固溶強化元素NbおよびMoを添加した高 Cr濃度20at%以上のフェライト系ステンレス鋼に着目し、広 範な用途に対応できる材料設計基盤を構築するために、α-Fe 母相における種々の金属間化合物相の析出挙動の理解を目指 し、シンプルなFe-Cr-Nb-Mo四元系のモデル合金系を 選択して系統的かつ基礎的な研究を展開してきた。その研究 成果³⁰⁻³³⁾の一部を本稿では紹介する。Fe-20Cr-xNb-yMo (x= 0.2-0.5, y=0-2, at%)を基本合金組成とすることで、析 出する主要な金属間化合物としてC14型Laves相を選択でき る。材料設計の基礎となる組織形成において、添加した固溶 強化元素を消費しながら金属間化合物相として主に Laves 相 とχ(Chi) 相が析出する過程、フェライト(α-Fe) 母相が加 工組織から回復再結晶する過程、材料表面近傍で高温酸化反 応が進行する過程、これら3つの過程が相互に影響を及ぼし 合って競合する関係に着目している。複雑な因子が関係する 組織形成過程に対して、その機構をシンプルな合金系におい て検討することを考えた。α-Fe母相に析出する金属間化合 物相に関して、平衡論と速度論という基礎的かつ多角的な視 点から組織形成過程の理解に挑戦している。

Fe-Cr-Nb-Mo四元系の相平衡とC14型Laves相の規則構造

Fe-Cr-NbおよびFe-Cr-Mo三元系状態図の800℃ 等温断面をFe-rich組成について模式的にFig.1に示す^{34,35)}。 α-Fe母相と平衡する金属間化合物は、Fe-Cr-Nb系では C14型Laves相と σ 相、Fe-Cr-Mo系ではさらに χ 相が加 わる。本稿で焦点をあてる主要な析出相はC14型Laves相で あり、Fe₂Nb, Fe₂Mo, Cr₂Nbがそれぞれの二元系において安 定相として存在し、Fe-Cr-Nb-Mo四元系では広い組成 範囲にわたりC14型Laves相 (Fe, Cr)₂ (Nb, Mo) の固溶体 を形成する。α-Fe合金の20at% Cr組成においてはLaves相 とχ相との平衡を考慮する必要がある。α-Fe母相に対する Nbの固溶限は1 at%以下であり、Laves相の析出量は制限さ れる。一方、Moの固溶限は約3 at%程度であり、C14型Laves 相を比較的高い密度と均質な分布で析出させるために、相平 衡の観点からNb単独ではなくMoとの複合添加により (Fe, Cr)₂(Nb, Mo)として組織制御することが望ましいと考え ている。Nb添加鋼に複合添加するMoの効果については、 Laves相の析出を促進する、あるいは逆に遅延させるという 異なった見解の報告例がある^{7,11,12)}。これらの報告ではNbと Moの組成は一定ではなく、安定な炭窒化物を形成するCとN など、他の合金元素が含まれているので注意が必要である。

Laves相Z₂Xは原子半径が大きい元素Xと小さい元素Zから 構成されたトポロジカルな最密充填構造TCP (Topologically Close-Packed)を有する^{37,39)}。面心立方晶fcc、稠密六方晶hcp などの最密充填構造GCP (Geometrically Close-Packed)と は区別される。本稿ではTCPのC14型規則構造を理解する 助けとして、最密面 (0001) $_{C14}$ の積層構造を模式的に表して Fig.2に示す。Laves相を構成する元素XとZの原子半径比 r_X/r_Z の理想値は1.225であり、多くのLaves相が1.05-1.69 の範囲に存在している。原子Zを稠密に配列した原子層から 周期的に原子Zを取り除くことで、図に示す原子層 [A]の六 角状ネット構造 (カゴメネットとも呼ばれる) ができる。小 さな原子Zが周期的に抜けた原子層 [A]の格子点の穴に、大 きな原子Xが上下から入り込めるように配列した原子層 $[\alpha]$ を上下から挟み込んで積層し、3層構造Triple-layer $[\alpha A \alpha]$

Fig.2 A set of schematic drawings showing the TCP structure of C14 Laves phase, which is composed of the orderly stacking of various atomic layers on basal (0001)_{C14}, i.e. for instance, the triple-layer "aAa" and the single-layer "a". Equivalent units of "aAa - a" and " $\beta B\beta - a$ " denoted as "A" and "B" are stacked repeatedly as "-A - B - A - B - a" yields the hexagonal C14 structure. On the other hand, if the units of "aAa - a", " $\beta B\beta - b$ " and " $\gamma C\gamma - c$ ", having equivalent unit but different atoms position each other, are stacked repeatedly as "-A - B - C - A - B - c", it results in the cubic C15. Moreover, "-A - B - C - B - A - a" stacking is known as the C36. (Online version in color.)

Fig.1 Schematic drawing of the isothermal sections at 800°C of (a) the Fe – Cr – Nb and (b) the Fe – Cr – Mo ternary phase diagrams ^{34,35}. (Online version in color.)

ができる。また、「α」と同一の配列を原子Xで構成した1層 構造をSingle-layer [a] とする。「A」「α」と全く同じ配列の $[B][\beta]$ で構成されるTriple-layer $[\beta B\beta]$ は $[\alpha A\alpha]$ と 原子配列は同一であり格子点位置がシフトしている。Triplelayerとsingle-layerを組み合わせて1ユニットとし、" $\alpha A \alpha$ $-a'' と \beta B \beta - a'' (図中でA と B として表記) が繰り返し積$ 層した構造"-A-B-A-B-"が六方晶基調のC14型規 則構造である。さらに、原子配列が同一で格子点位置が異な る3つの積層構造ユニット" $\alpha A \alpha - a$ ", " $\beta B \beta - b$ "、" $\gamma C \gamma$ -c"をそれぞれA、B、Cと表記し、"-A-B-C-A-B-C-"の積層を繰り返すと立方晶C15構造、"-A-B-C-B-A-"の積層を繰り返すと斜方晶C36構造となる。この ように大小異なるサイズのXおよびZから構成される原子面 が周期的に積層することでTCP構造となる。Fe₂Nb, Fe₂Mo, Cr₂NbはC14型Laves相であり、NbとMoが大きい元素X, FeとCrは小さい元素Zとして、Fe-Cr-Nb-Mo四元系 では (Fe, Cr)₂ (Nb, Mo) 固溶体を形成する。 例えば Mo/Nb 組成比の増大に伴いrx/rz比は理想値から外れて相安定性が 低下し、面欠陥密度が高くなる傾向がある。Laves 相の構造安 定性は析出挙動に影響を及ぼす因子としても重要である。

Fe-Cr-Nb-Mo合金における金属間化合物相の析 出挙動

加工したα-Fe母相における金属間化合物相の析出挙動を 観察した結果の一例として、Fe-20Cr-0.5Nb-2Mo合金に対し て、1100℃で0.5hの溶体化処理後に水冷、板厚70%の圧下 率まで冷間圧延、Ar雰囲気中800℃で1 h, 24 h, 168 hの時

効熱処理を施した際の組織変化をFig.3に示す。(a-c) は走査 型電子顕微鏡 (SEM: Scanning Electron Microscopy) の背 面反射電子組成像 (BEI: Backscattered Electron Image), (d-f) が透過型電子顕微鏡 (TEM: Transmission Electron Microscopy)の明視野像 (BFI: Bright Field Image) であ る。時効熱処理1hの場合、α-Fe母相では40 μmから120 μ m程度の再結晶粒が形成し、これらの粒界と粒内にC14型 Laves相が高密度に析出している。析出粒子は成長に伴い形 状が変化し、時効熱処理0.5から1hでは立方体状または針 状、24 hでは (0001) C14 晶癖面が発達した特徴的な針状とし て成長する。時効熱処理24 h以降は粗大化過程と考えられ、 168hでは粗大化した楕円体に近い板状となる。 析出する Laves相の体積率の代わりに面積率を画像解析により見積も ると1hの約4%から24hの8%まで増加し、168hでは若干 減少して約6%である。また、Mo添加量を0から2 at%まで 増加させると Laves 相の面積率は増大する。

Fe-20Cr-0.5Nb-2Mo合金で測定した800℃時効熱処理の保 持時間に対するNbおよびMoの溶質濃度変化をFig.4に示 す。溶質濃度の定量化学分析には波長分散型X線分光法によ るEPMA (Electron Probe Micro Analysis)を用いた。Nbと Moのどちらも、α-Fe母相に過飽和固溶された状態から析 出が開始することに対応して濃度は徐々に低下する。析出か ら粗大化に移行する時効熱処理24 h付近においてNbおよび Mo濃度の減少が一旦は緩やかになり、その後、さらに濃度 が低下する傾向を示す。TEMによる組織観察では粗大な析 出粒子に加えて対照的に微細な析出粒子が確認でき、二次析 出過程、オストワルド成長による再溶解などの可能性が考え

Fig.3 Typical microstructure developments focusing on the precipitation behavior of the C14 Laves phase in the α-Fe matrix of an Fe-20Cr-0.5Nb-2Mo alloy aged at 800°C for (a,d) 1 h, (b,e) 24 h, and (c,f) 168 h. Observations were conducted using (a-c) SEM-BEI and (d-f) TEM-BFI, respectively. (Online version in color.)

Fig.4 Changes in solute concentrations of Nb and Mo in the α -Fe matrix as a function of aging time at 800°C for up to 336 h, which was measured on the Fe-20Cr-0.5Nb-2Mo alloy aged at 800°C for various aging duration in Ar gas atmosphere.

られるが、詳細は理解されていない。

Laves相の核生成サイトは主にα-Fe母相の結晶粒界と亜 粒界、さらに粒内では転位、炭窒化物やµ相などの介在物で ある。CとNは構成元素としてではなく不純物レベルで含ま れており、介在物として形成するMX炭窒化物を核生成サイ トとしてLaves相が析出する様子がTEMにより観察されて いる。また、Laves相粒子が互いに密集してクラスターのよう に析出している形態が頻繁に観察される。組織は示していな いが、α-Fe母相の回復再結晶の初期にあたる時効熱処理0.5 hにおいて、既に微細なLaves相粒子がα-Fe母相の結晶粒界 および粒内に析出している。析出の開始時間を確定すること は難しいが、析出に伴う母相の溶質濃度の減少を合金の電気 抵抗率の低下として測定した結果から、Fe-20Cr-0.5Nb合金 で約100 min程度、Fe-20Cr-0.5Nb-2Mo合金では約10 min程 度の短時間時効で析出が開始することが示唆された³³。

時効熱処理100hにおける組織変化として、Laves 相の析 出粒子はオストワルド成長により粗大化する。また、 α -Fe 母相の粒界で局所的に χ 相が析出して急速に粗大化する。 Thermo-Calcを用いた熱力学計算結果³²³⁴によると、合金組 成Fe-20Cr-0.5Nb-2Moで安定相として析出する金属間化合 物はC14型Laves相だけであり、Mo濃度が増えると χ 相も 安定化する。Laves相の析出に伴い周辺の α -Fe母相でNbが 消費されて濃度が減少し、相対的にMo濃度が高くなること で χ 相が安定化されて析出すると考えられる。

析出して成長する過程における Laves 相 (Fe, Cr)₂ (Nb, Mo) のNb-Mo組成比に着目し、その変化を走査型透過電子顕微 鏡 (STEM: Scanning Transmission Electron Microscopy) のエネルギー分散型X線分光法 (EDS: Energy Dispersive X-ray Spectrometry)を用いて測定した結果、時効熱処理1 h ではNb-richの29Nb-4Mo at %、24 hではMo-richの15Nb-19Mo at%へと変化する傾向を見いだした。C14型Laves相

の安定性を原子半径比r_x/r_zに基づき評価すると、理想値 1.225に近い1.167のFe,Nbが1.111のFe,Moより安定である と判断できる。さらに状態図の視点では、Fe₂Nbは化学量論 組成からFeとNbの両サイドに広い組成幅を持って高温ま で安定であるが、Fe₂Moは約900℃以下において化学量論組 成でのみ安定であり、やはりFe2NbはFe2Moと比較して相 対的に安定性が高いと判断できる。また、α-Fe母相への固溶 限は800℃において1 at%以下のNbは約3 at%のMoより小 さく、Laves 相の主要構成元素となる溶質元素の過飽和度も 影響を及ぼすと予測できる。α-Fe中のNbおよびMoの拡散 係数について、いくつか報告されているが、DICTRA等の拡 散シミュレーションに広く採用されている文献^{40,41)}に示され る値を基に800℃におけるNbとMoの拡散係数を算出する とそれぞれ、 $2.69 \times 10^{-16} \text{ m}^2 \text{s}^{-1}$, $1.12 \times 10^{-16} \text{ m}^2 \text{s}^{-1}$ であり、Nbの 拡散係数はMoに対して約2倍大きい。様々な因子を考慮し なければ正確な理解はできないが、相安定性が相対的に高い Fe₂Nbに近い組成で析出が開始し、成長に伴い平衡組成に近 づきながら Mo濃度が徐々に高くなると解釈できる。

2.3 α-Fe母相におけるC14型Laves相析出粒子の成長機構

母相に第二相が析出する組織の形態を理解する基礎とし て、両相の結晶学的方位関係が重要な情報となる。体心立方 晶bccのα-Fe母相とTCPでhcp基調のC14型 Laves相の結 晶学的方位関係について、これまでに多数の研究例が報告さ れている⁴²⁴⁹⁾。TCPのC14型規則構造はFig.2に示したよう に複雑であることから、いくつかの異なる結晶学的方位関係 が共存する。α-Fe母相とC14型Laves相の最密面同士が平 行となる方位関係 {011} " // (0001) CI4 は共通しているが、合 金系によっては{211}_a//(0001)_{C14}という報告例もある。エ ネルギーの低い最密面 (0001) C14 がテラス面として広がりな がら積層を続ける成長機構であると予想して、α-Fe母相の 結晶粒内に析出したC14型Laves相粒子を対象として選び、 TEMにより結晶学的方位関係を解析した結果の一例をFig.5 に示す。 試料の Fe-20Cr-0.5Nb-2Mo 合金には1100℃で0.5 h の溶体化処理、板厚70%の圧下率で冷間圧延、Ar雰囲気中 800℃で24 hの時効熱処理を施している。Fig.5 (a) 明視野像 BFI、(b) 暗視野象 (DFI: Dark Field Image)、(c) 制限視野 回折図形 (SAD: Selected Area Diffraction Pattern) であり、 (d)の模式図に析出粒子の結晶学的な特徴をまとめて表して いる。観察した析出粒子は結晶粒内の介在物または転位に核 生成したと判断でき、粒子を取り囲む母相の結晶方位には差 異が無いと考えられる。SADに示すように電子線の入射方向 は[112]_a//[1210]_{c14}であり、BFIとDFIは晶癖面かつテラ ス面である (110) // (0001) CI4 が edge-on となる条件で観察 している。解析されたα-Fe母相とC14型 Laves相の結晶学

Fig.5 Microstructure and crystallography analyses for the C14 Laves phase growth mechanism, which was conducted for the Fe-20Cr-0.5Nb-2Mo alloy aged at 800°C for 24 h: (a) a bright field image of a C14 Laves phase particle precipitated interior of the *α*-Fe matrix showing the habit plane (0001)_{C14}, (b) a dark field image showing terraces and ledges of a plate shaped C14 Laves phase particle and a high density of stacking faults (SF) on basal (0001)_{C14}, (c) selected area diffraction pattern indicating the orientation relationship between *α*-Fe and C14 Laves phase, and (d) a schematic explaining the so-called double-terraced ledge mechanism for the growth of the C14 Laves phase precipitation particle. (Online version in color.)

的方位関係は以下のとおりである。

OR: $(\overline{1}10)_{\alpha} / /(000\overline{1})_{C14}, [111]_{\alpha} / /[\overline{1}010]_{C14}, [\overline{1}12]_{\alpha} / /[\overline{1}\overline{2}10]_{C14}$

C14型Laves相は、最密面である(0001)_{C14}底面をテラス面 として面内方向に成長して広がり、新たな原子面を積層しな がら成長が進行する。時効熱処理0.5から1hの析出の初期段 階では、TEM観察によると粒子形状は球および楕円体の形 状である。テラス面(0001)_{C14}が面内方向と積層方向に厚み を増しながら、粒子が[1010]_{C14}方向に伸張した棒状または 板状に成長するにつれて、(1210)_{C14}プリズム面が第2のテラ ス面とみなせるような形態に成長する機構を解明した。Fig.2 で説明したように複雑な原子層を周期的な繰り返しを必要と する積層構造であり、比較的高密度の積層欠陥が形成されて いることがFig.5 (b)のDFIから分かる。

析出粒子の成長機構には、母相の弾性異方性、母相と析出 相の格子ミスフィットと析出粒子サイズに依存して析出相 が母相から受ける弾性拘束の大きさ、構成元素の拡散係数な ど、様々な因子が影響を及ぼす。析出 Laves 相と α -Fe 母相 の界面において、弾性拘束を考慮しない状態での格子定数に 基づく原子結合距離を比較すると Laves 相の方が α -Fe 母相 に比べて大きい。 α -Fe 母相と C14型 Laves 相の相界面にお ける格子ミスフィットひずみ ϵ を SAD から評価して算出す ると、第1テラス面 ($\overline{110}_{a}$ //($\overline{0001}$)_{C14}では ϵ_{x} =-3.6%、第 2テラス面 ($\overline{112}_{a}$ //($\overline{1210}$)_{C14}では ϵ_{yy} =-2.9% であり、格 子ミスフィットは第1テラス面よりも第2テラス面で値が小 さいことが分かる。一方、法線方向が成長方向となっている (111)_a//($\overline{1010}$)_{C14}では ε_{xx} =-7.5%という大きな値であり 高い界面エネルギーが予想できる。定性的には、よりエネル ギーが低く安定な2つのテラス面の面積が増えるように成 長が進行し、整合性が低く高い界面エネルギーを有する面の 法線方向[$\overline{1010}$]_{C14}への成長が顕著に速くなり、この方向に 伸長した粒子形状になると考えられる。さらに詳しく解析を 重ね、いくつかの析出粒子では成長に伴って第2テラス面を 形成する相界面は($\overline{112}$)_a//($\overline{1210}$)_{C14}から($\overline{332}$)_a//($\overline{1100}$)_{C14} に、優先的に粒子が伸張する成長方向は[111]_a//($\overline{1010}$]_{C14} から[113]_a//($\overline{1120}$]_{C14}に変化することを見いだした³²⁾。析 出粒子が成長する際の基盤面となる第1テラス面($\overline{110}$)_a// ($000\overline{1}$)_{C14}の平行関係は不変であり、この面の法線方向を中心 軸として($\overline{112}$)_a//($\overline{1210}$)_{C14}と($\overline{332}$)_a//($\overline{1100}$)_{C14}は互いに 約30°回転した関係にあると解釈できる。

最密面 (0001)_{C14}をテラス面として面内方向に広がり、さら に新たな原子面が積層して厚みを増すというC14型Laves相 の成長機構から、テラス面を構成する各原子層の成長端部に は、段差として多数のレッジ (ledge) が形成することがFig.5 で観察される。一般にレッジメカニズムと呼ばれる機構は、析 出や相変態の固相界面をはじめ、凝固の固液界面、酸化や蒸 着で被膜が形成する表面における固相成長などで知られてい る⁵⁰⁵⁵⁾。Fig.5と同一の試料における別の析出粒子に対して観 察した高分解能TEM観察による格子像を一例としてFig.6 (a) に示す。第1テラス面 (0001)_{C14}を edge-onの状態で観察して おり、テラス面の成長端部には、いくつかのステップが観察さ れている。ステップの変位は相界面の欠陥Disconnectionで表 され、相界面上のステップが面内方向に移動することによっ てテラス面は成長する。レッジの移動で説明されるテラス面 内の成長機構を原子スケールで捉え、ステップの移動で説明 するように進展してきた。単位ステップは (**b**^D, h) で表記さ れ、**b**^DはDisconnectionに対応する界面転位のBurgersベク トル、hはステップの高さである。条件によって1以上の整数 m倍の大きさを有するステップ (m**b**^D, mh) が形成する。C14 型Laves 相の析出粒子に関して、ステップがテラス面内を移動 する成長機構の詳細は文献³²⁾に記載されている。

α-Fe母相の結晶粒界に析出する場合には、粒界を挟んで 隣り合う二つの結晶粒との方位関係に依存して析出粒は成 長する。Fig.3 (e) に示した時効熱処理24 hの試料について、 より広い視野で組織観察したTEM-BFIをFig.6 (b) に示す。 図中に記載のG1からG4は結晶粒を識別する番号である。加 工した α-Fe母相の回復再結晶で形成される亜粒界のような 小角粒界 (LAGB: Low Angle Grain Boundary) に析出する 場合は、結晶方位差角は数度であり、結晶粒内と類似した成 長挙動が観察される。小角粒界に沿って成長する粒子はほ とんど観察されず、結晶方位関係を保ちながら小角粒界を横 切るように両側の結晶粒内に成長する粒子が多く観察され る。析出粒子の周囲に観察される転位は、析出サイトになっ た既存の転位か、析出に伴い導入された転位であるかは分か らない。一方、結晶方位差角が15°以上の大角粒界(HAGB: High Angle Grain Boundary) にLaves 相が核生成して成長 する場合には、片側のα-Fe結晶粒とのみ特定の方位関係を 持って析出し、方位関係を保ちながら粒界に沿って成長する ことが典型的である。さらに、α-Fe母相に析出した Laves 相 の結晶学的方位関係のバリアントは合計で12通りあるため、 母相の結晶粒界性格を含めて詳細に析出機構と形態の関連を 調べることは興味深いと考えられる。

S Fe-Cr-Nb-Mo系合金の表面 近傍における高温酸化と金属間化 合物相析出の競合

3.1 合金の高温酸化挙動に及ぼす金属間化合物相析出の 影響

高温の酸化雰囲気下では、合金の表面近傍で保護性酸化皮 膜の形成と金属間化合物相の析出が競合して進行する複雑な 過程を理解することが、合金設指針の基礎的な知見として有 用である。フェライト系ステンレス鋼に関する高温酸化の研究 成果が報告されている^{2330,5658)}。表面近傍の*α*-Fe母相における Cr, Nb, Moの溶質濃度変化に伴う局所的な相平衡の変化に 焦点を合わせ、金属間化合物相の析出挙動および合金の酸化 挙動が相互に及ぼす影響を調べた研究結果の概略を紹介する。

安定相としてC14型Laves相が析出するFe-20Cr-0.5Nb-2Mo合金を選択し、1100℃で0.5 hの溶体化処理後に、大気 中の酸化雰囲気で750℃,800℃,850℃において時効析出と 酸化を兼ねた時効酸化熱処理を最長1512 hの保持時間で行 い、合金の表面近傍における組織変化と耐酸化特性の競合 関係に注目した。各温度で合金表面に形成する酸化被膜は 微量のNbとMoを固溶したCr₂O₃であることをX線回折と EPMAの結果から明らかにした。また、合金内部の析出挙動 はAr雰囲気における時効析出の組織観察および熱力学計算 に基づく構成相の体積率変化と概ね合致しており、酸化が及 ぼす影響は見られない。一方、Cr₂O₃皮膜形成と金属間化合 物相析出が競合する合金表面近傍においては、合金内部と比 べて析出挙動に顕著な差異が現れる。

800℃において24 h, 72 h, 336 hの時効酸化熱処理を施し た合金の表面近傍における組織変化について、BEIによる垂

Fig.6 (a) A lattice image observed using the high resolution TEM for the Fe-20Cr-0.5Nb-2Mo alloy aged at 800°C for 24 h. The unit disconnection (b^{D}, h) of a step, which is attributed to the lateral motion for the growth of a terrace, is shown, where *b* is the burgers vector of a disconnection, and *h* is a unit step height. (b) A set of bright field images showing morphology of C14 Laves phase precipitation particles. High angle grain boundaries (HAGB, >15°), low angle grain boundaries (LAGB, a few degrees <15°), and interior of grains are preferable and possible nucleation sites in the *a*-Fe matrix, where G1 through G4 stands for just a numbering for grains.

直断面の観察結果をFig.7 (a-c) に示す。時効酸化熱処理の開 始直後に、合金表面にはCr₂O₃皮膜が速やかに形成するが、 厚さが数nm程度であるためSEM-BEIのコントラストで識 別は難しい。Cr₂O₃被膜形成と金属間化合物相の析出が競合 することで、Fe-20Cr-0.5Nb-2Mo合金には表面のCr₂O₃被膜、 高密度のLaves 相とχ相が共存する領域、PFZ、基材という 構成で組織が形成される。α-Fe母相/Cr₂O₃被膜界面を有効 な析出サイトとしてLaves相の析出が促進され、時効酸化熱 処理24hでは合金内部に比べて大きく成長し、その近傍には Laves 相に関連した無析出帯 PFZ (precipitate free zone) が 形成する。時効酸化熱処理72 h以降では α -Fe母相/Cr₂O₃被 膜界面とLaves相を析出サイトとして x 相が析出するように なり、336hでは極めて粗大に成長している。α-Fe母相の溶 質濃度変化を調べると、Laves 相の析出が促進されることで 局所的にNb濃度が減少し、相対的にMo濃度が増大するた め、χ相が安定化されて析出して粗大化することが説明でき る。この傾向はThermo-Calcの熱力学計算結果³²³⁴⁾によって 理解できる。なお、 Cr_2O_3 被膜の形成による α -Fe 母相の Cr 濃 度減少はLaves相とχ相のいずれの安定性にも影響を及ぼさ ない。EPMAで定量分析した各相の化学組成をFig.7 (f) にま とめる。α-Fe母相の組成は0.5Nb-1.3MoであるがPFZの領 域では0.1Nb-0.8Moまで低下する傾向である。

Fig.7 (d) には、試料表面法線から1°以下の角度だけ傾け た法線の平面で研磨した傾斜研磨断面で組織観察した BEIを 示す。Fig.7 (e) の模式図で説明しているように、合金最表面 から基材内部に至る深さ方向への組織分布の変化を、面内分 布として観察できる。最表面Cr₂O₃被膜の下には、α-Fe母相 に高密度かつ微細にLaves相が析出した2相組織に、第3相 として析出粗大化したχ相が高密度に分布している領域が観 察できる。さらに深さ方向に対して、α-Fe母相と粗大なχ相 からなる2相組織の領域とPFZが存在し、α-Fe母相にLaves 相が析出した典型的な合金内部の組織領域に到達する様子が 観察できる。各組織領域は深さ方向に薄いため、表面に垂直 な縦断面では組織形態と構成相の分布状態は観察できない が、傾斜研磨断面では深さ方向に依存して変化する組織形態 と構成相の違いを面内の分布状態として観察でき、組織形成 に関する有用な情報を得ることができる。

750℃および850℃における時効酸化熱処理において、 Laves相は α -Fe母相/Cr₂O₃被膜界面を中心に優先的に析出 するが、長時間保持しても χ 相は析出しない。800℃と同様 にLaves相の析出により α -Fe母相のNb濃度が減少してMo 濃度が相対的に増大する溶質濃度変化が生じても、750℃と 850℃では χ 相が安定化されないことがThermo-Calcの熱力 学計算結果³²³⁴⁾に基づいて解釈できる。750℃,800℃,850℃ の各温度で時効酸化熱処理したFe-20Cr-0.5Nb-2Mo合金に おける酸化質量増加の経時変化の概略をFig.8に示す。これ らの温度域でのエリンガム図を計算により検討したところ、 Cr₂O₃が最も安定な酸化物でありNbとMoの酸化物は形成 しないと考えられる。Cr₂O₃被膜の成長が拡散律速であると 仮定し、酸化質量増加Δmの時間変化について、放物線則の

Fig.7 Typical microstructure, observed using SEM-BEI, of Fe-20Cr-0.5Nb-2Mo alloys (at%) after oxidizing and aging heat treatment at 800°C for (a) 24 h, (b) 72 h, and (c) 336 h. (d) A BEI showing microstructure observed for the inclined cross-section from the surface (left) to the depth about 10 μ m from the surface (right), and (e) a schematic drawing along the vertical section of a specimen together with a viewing direction for (d). Chemical compositions quantitatively measured using EPMA for each phase are summarized in a table. (f) Chemical composition of each phase is summarized as a table. (Online version in color.)

Fig.8 Oxidation mass gain of Fe-20Cr-0.5Nb-2Mo alloys (at%) after oxidizing and aging heat treatments at 750°C, 800°C, and 850°C, for durations up to 336 h.(Online version in color.)

係数を K_p としてWagner の式 $(\Delta m)^2 = K_b \cdot t$ を用いて評価 した。簡単に結果を紹介すると、各温度における酸化時間1h から336hの範囲で (Δm)²を保持時間に対してプロットして 求める *K*pの値は 750°C で 1.69×10^{-14} g² cm⁻⁴ s⁻¹、800°C で $1.79 \times$ 10^{-14} g²cm⁻⁴s⁻¹と小さいが、850°C では1.70×10⁻¹³ g²cm⁻⁴s⁻¹と 急激に増大する。温度が高いほど酸化は促進される傾向から 考えると、800℃では酸化が抑制されていると判断できる。 800℃では、χ相の析出と粗大化という異なる組織変化が生 じ、酸化機構が他の温度とは異なる。時効酸化熱処理336 h の範囲では、χ相の析出および急速な粗大化にCrが費やさ れるため外方への拡散が抑制され、Cr₂O₃被膜の成長が遅滞 することが原因として考えられる。α-Fe母相の粒界などに 析出した Laves 相による拡散の抑制効果が耐酸化性を向上さ せる一つの因子として報告されている。本研究では新たな知 見として、時効酸化熱処理における酸化皮膜形成と金属間化 合物析出が相互に及ぼす影響に起因して表面近傍における α -Fe母相の溶質濃度が変化すること、その結果として組織形 成過程と酸化機構が変化することを解明できた。

3.2 酸化挙動の経時変化とCr2O3皮膜ファセット粒の形成

Fe-20Cr-0.5Nb-2Mo合金に対して800℃で1004 hおよび 1512 hの長時間にわたる酸化時効熱処理を行うと、析出した χ 相の粗大化に伴って酸化質量増加が顕著に加速する傾向が 顕著になる。Fig.7に示した800℃における酸化質量増加の傾 向を長時間側に外挿した曲線で示される値よりも大きな質量 増加である。SEMの二次電子像 (SEI: Secondary Electron Image) で観察した熱処理時間1004 hにおける合金表面の組 織形態をFig.9 (a) に示す。合金表面に形成するCr₂O₃被膜は 数 μ m程度の微細な多結晶で構成されている。注目すべきは、 Cr₂O₃被膜を構成する一部の結晶粒が六方晶系 (0001) _{Cr203}底

面をテラス面とするファセット状の形態^{59,60)}で極めて粗大に 異常成長していることである。800℃で240hの時効酸化熱処 理を行った 合金に対してSTEM-BFIにより観察した表面近 傍の垂直断面の組織をFig.9 (b) に示す。STEM-EDSを用い て定量分析した各相の合金組成を表にまとめて示している。 時効酸化熱処理240hの段階において既に、合金表面に形成 したCr₂O₃被膜の所々でファセット状Cr₂O₃粒の粗大化が始 まっている様子が観察される。ここで例示するように、異常 成長したファセット状Cr₂O₃粒の多くは、粗大に析出したχ 相の直上で成長しており、多結晶の被膜を構成するCr₂O₃粒 の一部がファセット状に成長する起点になっていると判断 できる。測定したCr₂O₃の化学組成を被膜と粗大ファセット 粒で比較すると、前者には後者よりもFe, Nb, Moの固溶量 が若干高い傾向にある。大気中で酸化熱処理を行っているた め合金表面ではOイオンが十分に供給されていると考えれ ば、Crイオンの外方拡散がCr₂O₃粒の成長を律速する因子 となる。高いCr濃度を有する粗大な x 相がCrを供給するリ ザバーとして働いてCr拡散を促進することが、ファセット 状Cr₂O₃粒の異常成長に対する一つの要因として示唆され る。800℃の時効酸化熱処理において、χ相が析出を開始し て粗大に成長する336hまでの短時間熱処理では、χ相は母 相のCrを消費して粗大化するためCr2O3形成を抑制する。一 方、長時間熱処理ではχ相の役割は一転して、ファセット状 Cr₂O₃の異常成長をアシストするCr供給源になる。

4 おわりに

C14型Laves相およびχ相の析出と合金の高温酸化反応が 競合する関係に本稿では焦点をあて、合金の表面近傍におけ る酸化スケール形成、金属間化合物相の析出と成長過程を理 解するために展開してきた系統的な研究の一部を紹介させて いただいた。α-Fe母相の加工熱処理による回復再結晶挙動、 過飽和な溶質固溶元素による金属間化合物の析出挙動、高温 における合金の酸化挙動、これら3つが相互に影響を及ぼし 合う複雑な条件下に依存して変化する組織の観察と解析を通 して、現象論としての理解をそれなりに進めてきた。一方で、 これらを一般化して基礎学理として理解するため、機構論と しての理解を深める道のりは、まだ先が長いと言える。

CO₂などの温室効果ガス排出に起因すると考えられる地球 温暖化によって、近年では台風や豪雨など異常気象として規 模拡大が著しい自然災害が深刻化しており、地球環境の保全 と改善が急務であることを日常でも痛感するようになって きた。地球規模で脱炭素化社会を目指す先には、水素エネル ギーの利用を本格的に進め、やがて水素化社会という未来を 迎えようとしている。カーボンフリーで水素を「作る、運ぶ、

Fig.9 (a) Surface morphology of Fe-20Cr-0.5Nb-2Mo alloy after oxidizing and aging heat treatment at 800°C for 1004 h. Faceted Cr₂O₃ grains having the habit plane (001)_{Cr203} terrace are formed and coarsened abnormally large. (b) A bright field image of the vertical section near the surface showing a large faceted Cr₂O₃ grain which forms, during aging and oxidizing at 800°C for 240 h, on a coarsened *χ* phase grain precipitated just beneath Cr₂O₃ scale consisting of poly-crystals. Chemical compositions quantitatively measured using EPMA for each phase are summarized in a table.(Online version in color.)

貯める、使う」という課題を解決しながら、多彩なアイデア でSOFCを私たちの暮らしに普及させることが期待される。 「SOFC用金属セパレータの開発」というテクノスコープの 連携記事である本稿には、タイトル通りの開発に直結した内 容は記載されていないが、関連する合金設計の基盤となる研 究成果について報告した。よく言われているように、基礎は 応用の役に立つことを願うばかりである。

謝辞

本稿で紹介した研究は歴代学生の努力によって成し遂げら れました。生田力与、桐生知仁、白藤司、藪知衣理、加藤昂、 金井健太郎、鈴木脩介、近藤晋太郎、Lee Dosungの諸氏に感 謝申し上げます。本研究の一部をサポートいただいたJFEス チール株式会社に感謝申し上げます。

参考文献

- 1) W. Gordon and A. V. Bennekom : Mater. Sci. Tech., 2 (1996), 126.
- 2) N.Fujita, K.Ohmura, M.Kikuchi, T.Suzuki, S.Funaki and I.Hiroshige : Scr. Mater., 35 (1996), 705.
- 3) N.Fujita, K.Ohmura and A.Yamamoto : Mater. Sci. Eng. A, 351 (2003), 272.
- 4) B.Kuhn, C.A.Jimenez, L.Niewlak, T.Huttel, T.Beck, H.Hattendorf, L.Sigheiser and W.J.Quadkkers : Mater. Sci. Eng. A, 528 (2011), 5888.
- 5) 澤谷精, 南野繁, 森川博文: 鉄と鋼, 65 (1979), 1194.
- 6) M.P.Sello and W.E.Stumpf : Mater. Sci. Eng. A, 527 (2010), 5194.

- 7) J.D.Redmond, P.J.Grobner and V.Bis : J. Metals, February, (1981), 19.
- A. Miyazaki, K. Takao and O. Furukimi : ISIJ Int., 42 (2002), 916.
- 9) N.Fujita, K.Ohmura and A.Yamamoto : Sci. Eng. A, 351 (2003), 272.
- 10) G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee and K. S. Lee : Mater. Sci. Eng. A, 396 (2005), 159.
- J.C.Ahn, G.M.Sim and K.S.Lee : Mater. Sci. Forum (PRICM-5), 475-479 (2005), 191.
- 12) M.P.Sello and W.E.Stumpf : Mater. Sci. Eng. A, 528 (2011), 1840.
- 13) 村田純教, 鷹見恭平, 神谷美紗紀, 森永正彦, 橋詰良吉,三木一宏, 東司, 石黒徹: 鉄と鋼, 88 (2002), 214.
- 14) J. Hald and L. Korcakova : ISIJ Int., 43 (2003), 420.
- 15) A.Aghajani, F.Richter, C.Somsen, S.G.Fries,
 I.Steinbach and G.Eggeler : Scr. Mater., 61 (2009),
 1068.
- 16) J.L.Barrilao, B.Kuhn and E.Wessel : Micron, 101 (2017), 221.
- 17) J.R.M.Forbes and D.R.F.West : J. Iron Steel Inst., 208 (1970), 270.
- M. Takeyama : Mater. Sci. Forum, 539-543 (2007), 3012.
- 19) I.Tarigan, K.Kurata, N.Takata, T.Matsuo and M.Takeyama : Materials Research Society Symp. Proc., 1295 (2011), 317.

- 20) K.H.Tan, H.A.Rahman and H.Taib : Int. J. Hydrog. Energy, 44 (2019), 30591.
- 21) V.Miguel-Pérez, A.Martínez-Amesti, M.L.Nó,
 A.Larrañaga and M.I.Arriortua:Corros. Sci., 60 (2012),
 38.
- 22) N.Shaigan, W.Qu, D.G.Ivey and W.Chen : J. Power Source, 195 (2010), 1529.
- 23) T.Horita, H.Kishimoto, K.Ysmsji, Y.Xing, N.Sakai,
 M.E.Brito and H.Yokokawa : J. Power Source, 176 (2008), 54.
- 24) T.Horita, H.Kishimoto, K.Yamaji, Y.Xiong, N.Sakai,
 M.E.Brito and H.Yokokawa : Solid State Ionics, 179 (2008), 1320.
- A. Safikhani and M. Aminfard : Int. J. Hydrog. Energy, 39 (2014), 2286.
- 26) A. Safikhani, M. Esmailian, T. Tinatisereresht and G. B. Darband : Int. J. Hydrog. Energy, 41 (2016), 6045.
- 27) J.Shu, H.Bi, X.Li and Z.Xu : Oxid. Met., 78 (2012), 253.
- 28) L.Wei, J.Zheng, L.Chen and R.D.K.Misra : Corros. Sci., 142 (2018), 79.
- 29) D.W.Yun, H.S.Seo, J.H.Jun, J.M.Lee, D.H.Kim and K.Y.Kim : Int. J. Hydrog. Energy, 36 (2011), 5595.
- 30) W.Z.Zhu and S.C.Deevi : Mat. Sci. Eng. A, 348 (2003), 227.
- 31) Y. Kimura, K. Kato and Y. W. Chai : MRS Adv., 4 (2019), 1477.
- 32) Y.W.Chai, K.Kato, C.Yabu, S.Ishikawa and Y.Kimura: Acta Mater., 198 (2020), 230.
- 33) S.Ishikawa, T.Yamashita, T.Kiryu and Y.Kimura : Submitted to Mater. Character.
- 34) S. Kondo, Y. W. Chai, K. Kanai, D. Lee, M. Watanabe, S. Ishikawa, T. Yamashita and Y. Kimura : Submitted to Acta Mater.
- 35) P.Villars, A.Prince and H.Okamoto : Handbook of Ternary Alloy Phase Diagrams, Vol.7, ASM Intl., Materials Park OH, (1995), 8789, 8828.
- 36) H. Okamoto, ed., Desk Handbook Phase Diagrams for Binary Alloys 2nd edition, ASM Intl., Materials Park OH, (2010), 278, 284, 285, 382, 383.
- 37) A.K.Sinha : Prog. Mater. Sci., 15 (1972), 79.
- 38) P.Villars and L.D.Calvert : Pearson's Handbook of Crystallographic Data For Intermetallic Phases, second ed., ASM International, Materials Park, Ohio, (1991).

- F.Stein, M.Palm and G.Sauthoff : Intermetallics, 12 (2004), 713.
- J.Fridberg, L.-E.Torndahl and M.Hillert : Jernkontorets Ann., 153 (1969), 263.
- 41) 野原清彦, 平野賢一: 鉄と鋼, 63 (1977), 926.
- 42) K.Yamamoto, Y.Kimura and Y.Mishima : Mater. Trans., 45 (2004), 2598.
- 43) K. Yamamoto, Y. Kimura and Y. Mishima : ISIJ Int., 43 (2003), 1253.
- 44) K. Yamamoto, H. Usuba, Y. Kimura and Y. Mishima : Intermetallics, 14 (2006), 515.
- 45) F.Abe, H.Araki and T.Noda : Metall. Trans. A, 22 (1991), 2225.
- 46) Y. Murata, M. Morinaga, R. Hashizume, K. Takami, T. Azuma, Y. Tanaka and T. Ishiguro : Mater. Sci. Eng. A, 282 (2000), 251.
- 47) R.H.Jones, V.F.Zackay and E.R.Parker : Metall. Mater. Trans., 3 (1972), 2835.
- 48) G.J. Cocks and D.W. Borland, Met. Sci., 9 (1975), 384.
- 49) T.Sawatani, S.Minamino and H.Morikawa : Trans. ISIJ, 22 (1982), 172.
- 50) R.C.Pond : Line defects in interfaces, in : F.R.N. Nabarro (Ed.), Dislocations in Solids, 8, Elsevier Science Publishers B.V., (1989), 1, Chap. 38.
- 51) J. P. Hirth and R. C. Pond : Acta Mater., 44 (1996), 4749.
- 52) J. M. Howe, R. C. Pond and J. P. Hirth : Prog. Mater. Sci., 54 (2009), 792.
- 53) S.V.Kamat and J.P.Hirth : Acta Metall., 42 (1994), 3767.
- 54) M. Enomoto and J. P. Hirth : Metall. Mater. Trans. A, 27 (1996), 1491.
- 55) W.W.Mullins and J.P.Hirth : J. Phys. Chem. Solids, 24 (1963), 1391.
- 56) H.Ali-Löytty, M.Hannula, T.Juuti, Y.Niu and A.A.Zakharov : Corros. Sci, 132 (2018), 214.
- 57) J. Shu, H. Bi, X. Li and Z. Xu : Oxid. Met., 78 (2012), 253.
- 58) L.Wei, J.Zheng, L.Chen and R.D.K.Misra : Corros. Sci., 142 (2018), 79.
- 59) W.K.Burton, N.Cabrera and F.C.Frank : Trans. Roy. Soc. A, 886 (1950), 243.
- 60) C.Y.Cui, C.D.Xia, X.G.Cui, J.Z.Zhou, X.D.Ren and Y.M.Wang : J. Alloys. Compd., 635 (2015), 101.

(2022年4月18日受付)

466