

土壌腐食機構と土壌腐食性評価

Soil Corrosion Mechanism and Soil Corrosivity Evaluation

西方 篤 Atsushi Nishikata

東京工業大学 名誉教授

し はじめに

我が国においては高度成長期以降に建設された鋼構造物や コンクリート構造物の老朽化が大きな問題となっている。こ れらの構造物は土壌環境に曝されているため、土壌腐食機構 を解明することが防食設計をする上で重要となる。また、建 材を海外展開するためには、土壌の腐食性は国により異なる 可能性があり、対象となる国の土壌で長期間暴露試験を実施 する必要がある。そのような状況の中で企業側のニーズによ り、「鉄鋼材料の土壌腐食機構の解明」研究会(2016~2018年) そして「鉄鋼材料の土壌腐食性評価」研究会(2019・2020年) が立ち上がり、鋼材の土壌腐食について研究を実施してき た。本研究会には、異なる研究分野(土壌、微生物、腐食)の 大学の3研究室が参加し、それぞれの専門の立場から土壌腐 食の研究を進め、研究会の中で議論を重ねてきた。本稿では、 その成果に基づき「土壌腐食機構」と「土壌腐食性評価」につ いて解説する。

土壌は、土粒子間が水のみで満たされている飽和土壌(含 水率=100%)、空気と水が混在する不飽和土壌(0%<含水 率<100%)、そして空気のみが存在する乾燥土壌(含水率= 0%)にわけられる。一般に、地下水以深は飽和土壌、地下水 以浅は不飽和土壌である。また、地表付近の土壌は、天候(晴 天/降雨)により飽和/不飽和を繰り返す。飽和土壌と不飽 和土壌では鋼材の腐食機構が異なるため、本稿では飽和土壌 と不飽和土壌に分けてその腐食機構を解説する。本研究会で は現象を単純化するため、鋼構造物の地際における通気差腐 食や地下水レベル付近での飽和土壌/不飽和土壌間のマクロ セル腐食などは研究対象から除外した。

(2) 土壌腐食速度の計測

土壌腐食の評価には電気化学インピーダンス (EIS) 法を 用いた。土壌中でのEIS測定用セルの模式図を図1に示す。 二枚の炭素鋼板 (SM490A, 5×10 mm)をエポキシ樹脂に埋 め込み電極としている。EIS法は高周波数から低周波周波数 の広い周波数範囲の微小交流電圧を電極/土壌界面に印加す ることにより、その界面の電荷移動抵抗 (R_{ct})を決定する方 法である。腐食速度を表す腐食電流密度 (i_{corr}) は、 R_{ct} の逆数 に比例することが、水溶液中での腐食に関して報告されてい る^{1,2}。

ここでkは比例定数で、炭素鋼では約0.20 Vの値をとること

図1 土壌中での電気化学インピーダンス測定用セルの模式図 (Online version in color.) が実験的に示されている³⁾。土壌系でもこの式が成立し、k値 も同じ値が使えることを本研究会で確認している。従って、 EIS法により R_{ct} を連続的に計測することにより腐食速度の 経時変化をモニタリングすることができる。ファラデーの法 則により、 i_{corr} から鋼材の腐食質量減あるいは減肉厚さを計 算することができる。EIS法に関しての詳細は他を参照され たい^{4,5)}。

⟨3⟩ 飽和土壌における腐食機構⁶⁾

図2は採取した土壌と鉱物試料中での炭素鋼の腐食減肉厚 さを約1年間測定した結果である。飽和になるまで脱イオン水 を加えた飽和土壌で腐食試験を行っている。また、ここでは試

図2 土壌および鉱物試料に埋没した炭素鋼の平均腐食肉厚減少量

験前後の腐食質量減から腐食減肉厚さを求めている。黒ボク 土が最も腐食性が高く、1年間の腐食減肉厚さは約16 μmで あり、腐食速度は時間とともに減少していることがわかる。 その他の土壌と鉱物試料では、暗赤色土とモンモリロナイト の腐食性が少し低いが、大きな差異は無い。使用した土壌と 鉱物試料の理化学性を表1に示す。腐食速度の大きな黒ボク 土は低pHで、小さい暗赤色土とモンモリロナイトは高pHで あるが、黒ボク土よりさらにpHの低い赤色土やカオリナイ トの腐食速度はかなり小さいことから、土壌の種類による腐 食速度の違いをpHだけで説明することはできない。実土壌 や鉱物試料では多くの土壌因子が同時に変化する。そこで現 象を単純化するため、珪砂を模擬土壌として使用し、土壌の 粒径、かぶり厚さ、pHの影響について調べた。

図3は3% NaCl水溶液で飽和した珪砂模擬土壌中におけるEIS法により測定した炭素鋼の R_{c1}^{-1} と式(1)により計算した腐食速度 i_{corr} である。上図は粒径依存、下図はかぶり厚さ依存を調べたものである。珪砂の粒径を1~1000 μ mまで3桁変化させても腐食速度は1~2 μ A·cm⁻²の範囲にあり、粒径にはほとんど依存しないと言える。また、下図からかぶり厚さにも依存しないことがわかる。ここで1 μ A·cm⁻²の腐食電流密度は1mm/100年の肉厚減少速度に相当する。加えた間隙水は海水と同濃度の3% NaCl水溶液であるが、飽和土壌中では海水中より1桁以上小さい腐食速度をとることから、中性の飽和土壌の腐食性は極めて低いと言える。

中性土壌中での腐食反応は次のアノード反応(2)とカソー ド反応(3)の組み合わせにより進行する。

試料名	pН	電気 全炭素 全窒素 H 伝導率 (g/kg) (g/kg) (dS/m)		有効陽イオン 交換容量 (cmol ₀ /kg)	非晶質 酸化鉄 (g/kg)	遊離 酸化鉄 (g/kg)	粘土 含量 (%)	
土壤試料								¢
赤色土	4.8	0.02	8	0.5	1.2	4	105	66
黒ボク土	4.9	1.16	143	10.7	19.7	28	21	17
灰色低地土	5.4	0.51	26	2.6	19.6	9	13	35
暗赤色土	8.0	0.13	21	1.3	14.1	5	74	49
鉱物試料								
カオリナイト	3.4		-	93 - 3	1.5	-		-
シリカ	7.0	<u>2</u> -	<u>₩</u>	822	0	<u>-</u>	<u> -</u>	-
モンモリロ ナイト	10.4	ž.	<u>∎</u> ę	3 2 3	99.0	×.	5	-

図3 珪砂模擬土壌(飽和)中における炭素鋼の電荷移動抵抗*R*_{ct}⁻¹と 腐食電流*i*_{corr}の経時変化。上図:土壌粒径の影響、下図:土壌か ぶり厚さの影響⁶⁾ (Online version in color.)

 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ (3)

飽和土壌中での小さな腐食速度は、土壌中に自然対流が存在 しないため、土壌を通して酸素の供給(拡散)が遅くなるこ とによる。すなわち、腐食初期では、腐食反応により炭素鋼 /土壌界面での酸素が消費され、酸素の拡散層が土壌沖合に 向かって成長し、結果として腐食速度は減少する。ただし、 定常状態での腐食速度がかぶり厚さに依存しないことから、 酸素拡散層は土壌/空気界面までは成長しないと考えられ る。定常状態では錆層上での酸素の還元反応(電荷移動過程) が抑制されるため、その電荷移動過程が律速すると考えられ る。詳細については文献6)で報告しているので、それを参照 されたい。

図4は上図がpHの異なる3% NaCl水溶液(非緩衝性)で 飽和した珪砂中での腐食速度の経時変化である。初期過程 ではpH3がやや大きな腐食速度を示すが、15日後にはすべ て同じ腐食速度となる。下図はpH3と6の緩衝溶液と非緩衝 溶液で飽和したときの腐食速度である。緩衝溶液の腐食速度 は、初期数日間は大きな値を示す。しかしながら、最終的に はすべて同じ腐食速度まで減少する。酸性土壌中では、式(3) の酸素の還元反応に加え、式(4)の反応によりH⁺も腐食の 酸化剤となる。

図4 珪砂模擬土壌(飽和)中における炭素鋼の電荷移動抵抗R_{ct}-1と 腐食電流*i*_{con}の経時変化。上図:pHの影響(非緩衝溶液)、下図: pH緩衝性の影響⁶⁾(Online version in color.)

非緩衝溶液では、O₂と同様に、炭素鋼/土壌界面でのH⁺も 腐食反応により消費され、炭素鋼表面は中性化し、式(4)の 反応はH⁺の沖合からの拡散律速となるため腐食促進は著し く減少する。一方、緩衝溶液では炭素鋼/土壌界面のpHは 低pHに維持されるため腐食は促進され続ける。ただし、土 壌中では対流により炭素鋼表面へのリン酸塩の供給が無いた め、その緩衝能は次第に低下する。従って、酸性土壌の場合 も同様に、炭素鋼の腐食は初期過程においてH⁺により促進 されるが、炭素鋼/土壌界面にある土の緩衝能は腐食反応に より次第に失われるものと思われる。H⁺による腐食促進が 持続する期間は土壌のもつpH緩衝能に依存する。

飽和土壌中での腐食機構を纏めると、間隙水(地下水)の 動きが十分遅い飽和土壌の場合、酸化剤(O_2 , H⁺等)の供給 は極めて遅く、加えて、生成する錆による酸素還元の抑制効 果により、腐食速度は15日間の腐食試験で約1 μ A·cm⁻²(減 耗量:1mm/100年)まで低下する。長期的にはさらに下が ることが予想されることから、"100年で1 mmの腐食しろ" は妥当であると言える。ただし、酸性土壌の場合には、H⁺に より腐食が促進されるが、その促進の継続期間は土壌のもつ pH緩衝能に依存する。

不飽和土壌では、土粒子の間隙に空気が存在し、その間隙 空気が酸素の供給通路となるため飽和土壌に比べて大きな腐 食速度となる可能性がある。従って、腐食速度と含水率の関 係を明らかにすることが重要である。土粒子の間隙に存在す る水(間隙水)と空気(間隙空気)の割合は「含水率(%)」で 表され、その定義は次式で表される。

含水率(%) = (間隙水の全体積/全間隙体積) ×100 ······· (5)

図5は異なる含水率の珪砂中での炭素鋼の平均腐食速度 (不飽和土壌では不均一な腐食形態をとるため平均腐食速度 と呼ぶ)の経時変化である。粒径100 μmの珪砂を用い、土壌 のかぶり厚さは10 mmである。この結果からも明らかなよう に、飽和土壌(含水率100%)の腐食速度に比べ、不飽和土壌 の平均腐食速度が著しく大きいことがわかる。8日目の平均腐 食速度を含水率に対してプロットしたのが図6である。図中 のN値は測定回数を表す。含水率90%で最大値を示すことが

わかる。腐食電位は含水量の増加とともにより貴な電位をと ることから(図7)、飽和土壌から含水率を減少させていくと、 炭素鋼の腐食速度は式(3)の酸素の還元反応が促進されるこ とにより増加し、含水率90%付近で最大となり、さらに含水 率を減少させると式(2)の鉄のアノード溶解反応が抑制され ることにより平均腐食速度が減少すると考えられる。図8は 含水率の異なる珪砂中での炭素鋼のアノードとカソード分極 曲線である。含水率の減少とともに、土壌中の間隙空気が増 え酸素の拡散通路が増えるため酸素還元反応は促進され、一 方、炭素鋼/土壌界面での間隙水が減少するため鉄のアノー ド溶解反応は抑制されることが分極挙動からも確認される。

図9は15日間の腐食試験後の炭素鋼の腐食形態である。こ

図7 異なる含水率の珪砂模擬土壌中における炭素鋼の腐食電位の経 時変化⁷⁾ (Online version in color.)

図8 異なる含水量の珪砂模擬土壌中における炭素鋼の分極曲線⁷⁾ (Online version in color.)

れらは除錆後の写真である。含水率100%(飽和土壌)では 全表面で均一に腐食が起きているのに対し、90%, 30%の不

<u>3 mm</u>

図9 異なる含水率の珪砂模擬土壌中に埋没後の炭素鋼の腐食形態 (Online version in color.)

図10 最大浸食深さと腐食面積と含水率の関係⁷⁾ (Online version in color.)

飽和土壌では腐食が進行している部分 (黒色) と健全部 (灰 色) にわかれ、腐食は不均一であることがわかる。これは腐 食部で式(2)の鉄のアノード溶解反応が進行し、健全部で式 (3)の酸素の還元反応が進行したためである。全表面の浸食 深さをレーザー変位計により測定し、最大浸食深さと腐食部 面積を含水率に対してプロットしたのが図10である。含水 率が減少するにつれて、腐食部の面積は減少し、含水率80% 以下で5%以下であった。一方、含水率70~90%の範囲で最 大浸食深さは150~350 µm/15 dayと大きな値を示した。図 11はEIS法により求めた平均腐食速度*i*corrと腐食部(アノー ド部)の平均腐食速度 i_{corr} (a) である。前者は測定された R_{ct}^{-1} を全表面積で除した全電極表面の平均腐食速度、後者は腐食 部面積で除した腐食部の平均腐食速度である。両者の含水率 依存性は類似しているが、icorr(a)が一桁大きいことがわか る。不均一腐食を評価するためには、全面の平均腐食速度で はなく、腐食部の平均腐食速度あるいは最大浸食深さを用い

図11 平均腐食電流密度iと含水率の関係。 i_{corr}:全表面当の平均腐食速度 i_{corr(a)}:腐食部の平均腐食速度⁷⁾

図12 不飽和土壌中における腐食機構⁷⁾ (Online version in color.)

731

るべきであり、飽和土壌に比べて不飽和土壌では極めて大き な浸食速度となる。

不飽和土壌での炭素鋼の腐食機構を説明する模式図が図12 である。不飽和土壌では、式(2)の鉄のアノード溶解が進行 するサイト(赤)と式(3)の酸素の還元反応サイト(青)は分 離する傾向がある。炭素鋼/土壌界面に十分な水が存在する 場所がアノードサイトとなり、炭素鋼/土壌界面には薄い水 膜が存在し、直上の土壌中には酸素の拡散通路が十分確保さ れる場所がカソードサイトとなる。すなわち、両反応は別々 の場所で進行するため、飽和土壌に比べて腐食が進行する面 積は小さいが、腐食部の浸食速度は著しく大きくなる。白金 電極を用いて電気二重層容量の含水率依存性を調べた結果、 含水率が70%以上では炭素鋼の接液界面は100%(全表面が 濡れている)であるが、含水率が50%以下になると接液界面 は減少し炭素鋼表面は部分的に乾きはじめる⁷⁰。乾いた表面 ではアノード、カソードのいずれの反応も進行しないので、 50%以下になると著しく腐食面積は減少する。

不飽和土壌中で平均腐食速度(*i*corr)に及ぼすかぶり厚さ の影響を調べた結果が図13である。前述したように、飽和土 壌(含水率100%)では腐食速度はかぶり厚さ依存が見られ なかった。一方、不飽和土壌では、腐食の律速段階がカソー ド支配からアノード支配に移行する90%付近において、か ぶり厚さの逆数(*d*⁻¹)に比例して腐食速度は増加する。すな わち、90%付近では土壌中の酸素の拡散が炭素鋼の腐食の律 速段階となっている。さらに含水率を減少させると腐食はア ノード支配になるため、かぶり厚さ依存はなくなる。従って、 図6において、含水率90%で平均腐食速度が最大を示すとし たが、これはかぶり厚さ10 mmで測定された結果で、平均腐 食速度が*d*⁻¹に比例して減少することを考えると、かぶり厚 さが厚くなると、最大の平均腐食速度を示す含水率は90%よ り低い含水率側に移行することが予想される。

5 微生物腐食

実環境から採取した黒ボク土中における炭素鋼の腐食速度 の経時変化を図14に示す。採取した土壌は160℃で2時間滅 菌処理をしたもの(微生物無し)と無処理のもの(微生物有り) を用い、それに高純度水を飽和するまで加えている。また、 測定は大気開放(好気性)と脱酸素環境(嫌気性)で行ってい る。滅菌処理した土壌での腐食速度は、嫌気、好気にかかわ らず、開始直後に急激に減少し、珪砂と全く同じ挙動であっ た。一方、無処理の土壌の腐食速度は大きく、特に、嫌気性土 壌では長期に渡って大きな腐食速度を示している。腐食試験 後の無処理の嫌気性土壌の腐食部に硫黄(S)が検出された ことから、嫌気性の硫酸塩還元菌による微生物腐食が示唆さ れた。この方法により、微生物腐食の進行の有無を簡便に調 べることができる。

6 土壌の腐食性評価

土壌の腐食性を決定する主因子は、pHとその緩衝能、含水 率および微生物であることが示された。また、土壌のかぶり 厚さは、腐食の律速段階がカソード支配からアノード支配に 遷移する含水率(かぶり厚さ10mmの珪砂で90%)付近のみ 影響を及ぼす。ここでは、土壌の腐食性、すなわち鋼材の土 壌腐食速度を迅速に評価するラボ試験について述べる。図1 のセルを使ったEIS法による腐食速度の評価は短時間で定常 状態の腐食速度を推定でき、従来の長期暴露試験に代わる土 壌の腐食性の迅速評価法として有効な手段である。本研究会 では、九州大学伊都キャンパス(九大伊都)、日本ウエザリン グテストセンターの銚子暴露場(JWTC銚子)と九州大学農

図13 不飽和土壌中における平均腐食速度とかぶり厚さの関係⁷⁾ (Online version in color.)

図 14 採取した実土壌 (黒ボク土) 中における炭素鋼の腐食速度 (Online version in color.)

学部演習林(九大演習林)の3か所の実土壌を採取して、その 腐食性をEIS法により評価した。また、プローブ電極(図1) を現地の土壌に埋設しEIS法により長期間の腐食モニタリン グも実施した。

図15はそれぞれの暴露サイトから採取した土壌での炭素 鋼の腐食速度の経時変化である。高純度水を飽和になるまで 各土壌に加え、飽和土壌(含水率100%)にした状態でEIS法 により評価している。九大伊都で採取した土壌中では、腐食 速度は試験開始5日で0.5 μ A·cm⁻²まで減少し、腐食減耗は 100年で厚さ1mm以下と換算されることから腐食性が十分 低い土壌と評価される。JWTC銚子から採取した土壌では、 最終的には九大伊都と同程度の腐食速度まで落ちるが、腐 食速度の減衰は遅く開始初期20日間の腐食速度は大きな値 を示すので、初期の腐食性の要因を検討する必要がある。ま た、九大演習林の土壌は、他の2箇所に比べ、大きな腐食速度 が最後まで続き、得られた R_{ct}^{-1} から推定される100年間の腐 食減耗は厚さ2 mm以上となり、一般の中性土壌に比べで腐

図15 各暴露サイトから採取した土壌の腐食性評価結果 (含水率: 100%) (Online version in color.)

食性が高いと判断される。表2は各土壌の分析結果である。 表中の「深さ」は土を採取した深さを表している。図15は JWTC銚子が10 cm、九大伊都と演習林が20 cmの深さから 採取した土壌の結果である。土壌の種類は、JWTC銚子が黒 ボク土、九大演習林が褐色森林土、九大伊都が未熟土で、そ れぞれ種類の異なる土壌である。表を見ると、土壌のpHは 九大伊都>JWTC銚子>九大演習林の順で低い。各土壌の微 生物の解析(菌叢解析)の結果、これらの土壌に差異が見ら れないことが確認されていることから微生物の関与の可能性 は低いと考えられ、従って、腐食速度の違いはそれぞれの土 壌のpHとその緩衝能の違いによると思われる。

実土壌環境で腐食モニタリングも試みた。図16はIWTC 銚子と九大演習林における平均腐食速度(R_{ct}⁻¹)と溶液抵抗 R_{sol} (土壌抵抗)の逆数の経時変化を約150日間計測した結果 である。ここでは、高周波数(10 kHz)と低周波数(10 mHz) の2点周波数のインピーダンスを1時間毎に自動測定し、高 周波数のインピーダンスをR_{sol}、低周波数と高周波数のイン ピーダンスの差を R_{tt} とした。図16は深さ10 cmの位置に埋 設したプローブ電極のモニタリング結果である。R_{sul}⁻¹の変化 は市販の含水量計の変化と良く一致し、かつ R_{sol}^{-1} が急激に 大きくなる時間と付近の気象台で降雨が記録されている時間 とが良く一致したことから、 R_{sol}^{-1} 変化から土壌含水率の変化 に関する情報が得られる。また、平均腐食速度 R_{ct}^{-1} は R_{sol}^{-1} と 良く対応して変化している。両暴露サイトのR_{ct}⁻¹を比較する と、ラボ試験での試験結果と同様に、九大演習林の土壌の腐 食性が高いことがわかる。また、ラボ試験では飽和土壌(含 水率100%)にした状態で腐食性を評価したが、実土壌の地 表付近では含水率は降雨により変動するため、図15 (含水率 100%) と図16のR_{ct}⁻¹を比較すると、実土壌環境の方が大き な平均腐食速度となっている。すなわち、実土壌環境では不

表2	モニタリ	リングサイ	トの土壌の理化学性
----	------	-------	-----------

採取地	土壌の 種類	深さ	рН	電気伝	粒径組成			会出来	ム空主	陽イオン	遊離	非晶質
				導率	粘土	シルト	砂	土灰糸	土主糸	交換容量	酸化鉄	酸化鉄
		cm		dS/m	%	%	%	g/kg	g/kg	cmol _c /kg	g/kg	g/kg
JWTC銚子	黒ボク 土	10	5.5	0.05	22	28	50	33.7	2.60	21.5	53.0	22.1
		50	5.5	0.05	22	16	62	16.3	1.20	18.9	74.9	24.3
		100	5.6	0.04	3	9	88	16.6	1.10	22.1	66.2	33.9
九大演習林	褐色森 林土	10	5.0	0.19	40	41	19	91.3	6.80	43.7	9.1	5.1
		20	5.1	0.04	49	39	12	24.0	1.70	41.3	11.2	4.8
		40	5.3	0.06	30	41	29	8.4	0.90	37.0	13.1	4.9
九大伊都 キャンパス	未熟土	10	7.7	0.09	6	15	79	4.6	0.20	5.9	3.9	0.9
		20	7.4	0.06	4	11	86	1.5	-	5.6	3.8	0.7
		40	7.5	0.07	4	10	86	2.2	-	5.5	4.0	1.0

図16 暴露サイトでの腐食モニタリング結果 (Online version in color.)

飽和状態にあるためである。実土壌環境での腐食モニタリン グは含水率の変化による平均腐食速度の変化を知ることがで きるが、前述したように不飽和土壌中では腐食は不均一であ るため、実際の浸食深さを得るためには腐食部の面積を評価 する必要がある。従って、腐食速度の定量的な迅速評価とし ては、含水量100%でのラボ試験の方が有利かもしれない。

乙 おわりに

本研究会の活動により、炭素鋼の土壌腐食機構を解明し、 土壌の腐食性の迅速評価法を提案することができた。実際の 鋼構造物では、ひとつの連続した大きな構造体が異なる土壌 環境に接しマクロセルを形成することが少なくない。例え ば、地表付近では、降雨の影響により含水率が深さ方向に連 続的に変化する。また、地下水レベル付近では、飽和土壌と 不飽和土壌の境界が存在する。これらの含水率の違いはマク ロセル腐食を引き起こす可能性がある。そのような状況下で の腐食に土壌因子がどのように関与するのかについては今後 検討する必要がある。

謝辞

本稿では、日本鉄鋼協会「鉄鋼材料の土壌腐食機構の解明」 研究会(2016-2018)」、「鉄鋼材料の土壌腐食性評価」研究会 (2019-2020)の成果のうち、すでに公表されている内容を中 心に紹介した。研究会の関係者各位に謝意を表する。

参考文献

- M.Stern and A.L.Geary : J. Electrochem. Soc., 104 (1957), 56.
- 2) I.Epelboin, M.Keddam and H.Takenouti : J. Appl. Electrochem, 2 (1972), 71.
- 3)水流徹,春山志郎:防食技術,27(1978),573.
- 4)西方篤:防錆管理,65 (2021),296.
- 5)西方篤: Electrochemistry, 79 (2011), 45.
- 6) R. Hirata, W. Yonemoto, A. Ooi, E. Tada and A. Nishikata: ISIJ Int., 60 (2020), 2533.
- R.Hirata, A.Ooi, E.Tada and A.Nishikata : Corros. Sci., 189 (2021), 109568.

(2022年5月2日受付)

734