特集記事 • 5

Additive Manufacturing of Cemented Carbides and its Process Informatics

名古屋大学 大学院工学研究科 助教

(株) フジミインコーポレーテッド 課長 伊部博之 Hiroyuki Ibe

鈴木飛鳥

Asuka Suzuki

名古屋大学 大学院工学研究科 准教授

高田尚記 Naoki Takata

名古屋大学 大学院工学研究科 教授

教授 Makoto Kobashi

小橋

あいち産業科学技術総合センター 産業技術センター 瀬戸窯業試験場 場長

□加藤正樹 ‱Masaki Kato

叵

し はじめに

金属積層造形 (Additive Manufacturing:AM) はコンピュー タ支援設計 (Computer-aided design:CAD) による三次元 構造のデジタルデータをもとに、1層ずつ金属原料を積層す ることで目的とする形状・トポロジーを持った部材を創製す る技術である^{1,2)}。従来の加工法に比べて複雑な形状の製品を 創製できる利点がある。この金属AM技術の中でも、特に精 密な造形を可能とする技術がレーザ粉末床溶融結合法(Laser powder bed fusion:L-PBF)である^{1,2)}。L-PBF法では、造形 プラットフォームに設置したベースプレート上に金属粉末を 薄く敷設し、レーザを走査することで粉末を選択的に溶融・ 結合する。この操作を繰り返すことで、三次元的な造形物を 製造する。

超硬合金は、WC硬質粒子とCoバインダー相からなる複 合材料である。高硬度・耐摩耗性を有することから、切削 工具や金型などに利用されている³³。従来は原料となるWC とCoの混合粉末を焼結し、製品の形状へ切削することで使 用されてきた。しかしながら、このプロセスでは製品の製造 期間が長いこと、歩留まりが悪いこと、作製できる製品の形 状に制限があることなどが課題である⁴⁰。こうした問題の解 決にL-PBF法の適用が有効である。L-PBF法によってニア ネットシェイプで造形できれば、仕上げ加工のみで製品とし て供することができるため、製造完了までの期間を短縮でき るとともに歩留まりも改善される。さらに、複雑な形状を作 製できるL-PBF法の特徴を活かして、内部に冷却水管を配 置した金型など高機能な超硬合金製品を高い設計自由度で製 造できる可能性がある。

一方で、超硬合金はL-PBF法による造形性が非常に低く、 造形物内部には多数の気孔やクラックが見られる^{5,6)}。さら に、レーザによって高い温度まで加熱されるため、WCや Co相以外の相 ($W_2C \approx \eta - W_3Co_3C \alpha \mathcal{E}$)が形成する^{7,8)}。こ うした気孔やクラック、 $W_2C \approx \eta - W_3Co_3C \alpha \mathcal{E}$ の相の存在 によって、L-PBF法で作製した超硬合金の機械的性質(硬 さ、破壊靭性など)は従来の焼結法で作製したものと比べて 低い^{4,9-13)}。著者らの研究グループでは、こうした課題の解決 に向けて、超硬合金の積層造形に適したプロセス条件の探 索、微視組織形成過程の理解、熱処理やプロセスパラメータ による組織制御などを進めてきた¹⁴⁻¹⁶⁾。本記事では、こうし た研究の中で得られた成果について紹介する。

2 超硬合金積層造形体の造形性 および微視組織

Fig.1 (a, b) に造粒焼結法により作製したWC/25 mass% Co超硬合金粉末のSEM像を示す¹⁴⁾。この合金粉末を用い て、Fig.1 (c) に示す10×10×10 mm³の立方体形状試料を L-PBF法により作製した。立方体試料の断面における光学顕 微鏡像をFig.1 (c) に示す¹⁴⁾。この試料は、レーザ出力 (P) を 195 W、レーザ走査速度 (v) を300 mm/sとして造形してお り、その相対密度は約85%である。さらにレーザによる入熱 を増加 (レーザ出力を増加、走査速度を減少) させれば、相 対密度を向上させることは可能であるが、同時に造形中にク ラックやベースプレートからの剥離が生じることが問題と なる。Fig.1 (d) にFig.1 (c) の破線で示す断面を光学顕微鏡 で観察した結果を示す。85%という比較的低相対密度であ ることからも予想されるように、試料内部には多数の気孔が 認められる。こうした気孔を取り除く方法については第3節 で紹介する。同じ断面における微視組織を走査型電子顕微鏡 (SEM) で観察した結果をFig.1 (e) に示す。超硬合金積層造 形体は従来の焼結法で作製した超硬合金と大きく異なり、不 均質な組織を呈している。

Fig.2に超硬合金積層造形体の微視組織を電子線後方散乱 回折(EBSD)およびエネルギー分散型X線分光(EDS)分析 により解析した結果を示す¹⁵⁾。解析の結果から、超硬合金積 層造形体の微視組織は主に2つの組織領域に大別されること が分かった。1つ目はFig.2 (a)の画像内上部にあるWC分解 領域である。この領域では、気孔(最暗部)が多数形成して いる。また、Fig.2 (b)のEBSD解析によるPhase mapから、 W₂Cやη-W₃Co₃C相の形成が高い割合で認められる。もう 1つの領域がFig.2 (a)の画像下部にあるWC/Co二相領域で ある。この領域では気孔が比較的少ない。また上述のW₂Cや η-W₃Co₃C相の割合が比較的少なく、WC相及びCo相を主 な構成相とする(Fig.2 (b))。Fig.2 (c, d)に示したエネルギー 分散X線分光(EDS)分析より、気孔の表面にはCの濃化が 認められる。また、Coの元素分布をみると、WC分解領域に おいてCoの割合が比較的少ない。実際にEDSによる定量分 析を行うと、WC/Co二相領域におけるW:Coの平均モル比 が46:54(原料粉末におけるW:Coの平均モル比は59:

Fig.1 (a, b) SEM images showing the (a) surface and (b) cross-sectional microstructure of WC/25 mass%Co cemented carbide powder fabricated by agglomeration and sintering process¹⁴). (c) A photograph of an L-PBFmanufactured WC/Co cemented carbide cubic sample¹⁴). (d) Optical micrograph and (e) SEM image showing the cross-sectional microstructure of the sample¹⁴).

41となっていた。こうしたCやCoの分布はレーザ照射によっ てCやCoが揮発したことを示唆する。気孔部におけるCの濃 化については、揮発したCの一部が急速な冷却によって造形 体内部に気孔の壁面に蒸着して残存していると推察される。

超硬合金積層造形体に生じる2つの組織領域について理解 するために、WC/Co超硬合金焼結体にレーザを一度のみ走 査するシングルトラック試験を行い、レーザ照射部の微視組 織を調べた結果をFig.3に示す¹⁶⁾。Fig.3 (a)より、レーザ照 射部近傍に多くの気孔が形成しており、積層造形体における WC分解領域に近い組織形態を呈していることが分かる。実 際に、この領域にはW₂Cやη-W₃Co₃Cが形成した¹⁶。この 領域は、Fig.3 (b) に示されるようにデンドライト組織を呈 しており、WCとCoともに融解して液相になり、その後に凝 固したことを示唆する。さらに、レーザ照射部から離れると、 WC粒子が認められる。一見、この領域は通常のWC/Co超硬 合金の組織と違いは認められない。しかしながら、Fig.3 (c) に示したように、Co相部において明るい網目状の組織が認 められる。さらに、多面体形状を有するWC相の角がわずか に丸みを帯びていることが分かる。これらの組織形態はCo 相のみが融解し、WC相がCoリッチな液相へ溶出したこと

Fig.2 (a) SEM images, (b) corresponding EBSD phase map, and (c-e) EDS element maps of (c) C, (d) Co, and (e) W in the L-PBF-manufactured WC/25 mass% Co cemented carbide¹⁵⁾. (Online version in color.)

Fig.3 (a) Low- and (b, c) high-magnification SEM images of single-laser scanned WC/Co sintered bulk¹⁶⁾.

を示唆する。以上のことから、レーザ照射中心部付近では、 WC粒子とCo相がともに融解してWC分解領域が形成され、 レーザ照射中心部から離れると、Co相のみが融解してWC/ Co二相組織が維持されると考えられる。

以上の結果から、超硬合金積層造形体において観察され る2つの組織領域は、レーザによる局所加熱とWC、Co相の 融点差に起因するものと考えられる。レーザ照射中心部か ら離れると、レーザ照射部近傍ほど温度上昇は生じず、融点 の低いCo相 (融点:1495℃) のみが融解する。その後一部 WC相からWとCが溶出するものの、WC相とCo相の二相 からなる組織が保持される。一方、レーザ照射部近傍では、 より高い温度まで上昇するため、Co相だけでなくWC相(融 点:2870℃) も融解し、WC分解領域を形成する。ここで、 CALPHAD法により作成した、C-Co-W三元系状態図の液相 線投影図¹⁷⁾をFig.4 (a) に示す。図中の白色および灰色で示 した円形のプロットは、それぞれ粉末および造形体の平均組 成を蛍光X線分析および赤外線吸収分光法により評価した結 果を表している。造形体の平均組成は上述のCoやCの揮発 により粉末組成からわずかにW-rich側へシフトする。これ らの組成では、初晶としてGraphite相が晶出することが予 測される。粉末の組成での非平衡凝固過程をScheilの条件¹⁸⁾ に基づき計算した結果をFig.4 (b) に示す。この組成での凝 固過程では、Graphite相、WC相、η-W₃Co₃C相、Co相の順 に晶出することが予測される。しかしながら、実際の組織で はW2C相も高い割合で晶出するため、この凝固過程ではWC 分解領域における組織形成を説明できない。上述のように、 WC分解領域では顕著なCo, Cの揮発により局所的な組成が 粉末の組成から大きくシフトすることが予想される。EDS 分析ではC濃度の定量化が困難なため、正確なWC分解領域 の組成は現時点では不明であるが、W:Coの平均モル比が 59:41程度であることから、図中の破線上に組成がシフトす ると考えられる。そこで、仮の組成として四角形のプロット (■) で表される組成にて、Scheilの条件に基づく凝固過程 を計算した結果をFig.4 (c) に示す。この組成では、W₂C相、 n-W₃Co₃C相、WC相、Co相の順に晶出することが予想され る。この凝固過程は、実験事実と矛盾しないことからWC分 解領域の組成は図中の四角形のプロット付近であることが示 唆される。このように、超硬合金積層造形体の2つの組織領 域からなる不均質組織は、WC相とCo相の融点差、局所的な レーザ走査による温度分布の不均一性、高温でのCo、Cの揮 発に起因して、造形体内の場所ごとに異なる溶融・凝固過程 を経ることで形成すると考えられる。

3 超硬合金積層造形体の組織制御

3.1 熱処理による組織制御

WC/Co超硬合金積層造形体の組織を制御し、WC分解領 域を取り除く方法として熱処理によるアプローチを紹介す る。WC/25 mass % Co超硬合金積層造形体に1380℃/12 h の熱処理を施した後の、SEM像およびEBSD解析による

Fig.4 (a) Liquidus projection of C-Co-W ternary system¹⁴⁾ and (b, c) solidification sequence calculated under the Scheil condition at compositions of (b) W-36.3 mol % Co-31.9 mol % C (composition of raw powder) and (c) W-33.3 mol% Co-19.7 mol% C. (Online version in color.)

Fig.5 (a) SEM image and (b) EBSD phase map of WC/25 mass% Co cemented carbides processed by L-PBF and subsequent heat treatment at 1380°C ¹⁵. (c) Isothermal section at 1380°C of equilibrium phase diagram for C-Co-W ternary system¹⁵. (Online version in color.)

Phase mapをFig.5 (a, b) に示す¹⁵⁾。なお、1380℃はCo相の 融点以下の温度であるが、Co相とWC相の共晶融解によっ て、液相が発生する温度である。こうした温度域で熱処理 を行うと、上述のWC分解領域は消失し、WC/Co二相組織 を得ることができる。この組織変化が生じる理由を、同様 にCALPHAD法により計算したC-Co-W三元系状態図の 1380℃等温断面図 (Fig.5 (c)) により考える。図中に示した、 白色および灰色の円形プロット (〇) は、それぞれWC/25 mass% Co超硬合金の原料粉末および造形体の組成を表す。 上述のCやCoの揮発によって、造形後には組成がわずかに W-rich 側へシフトしている。しかしながら、造形体の組成 はこの温度において液相 (Co-rich) + WC相の相領域に位 置するため、WC分解領域におけるW₂Cや η -W₃Co₃C相は 不安定である。そのため、これらの相の構成元素が液相へ溶 出し、液相と平衡するWC相の晶出が起こると考えられる。 その後、Co-richの液相が凝固してCo相を形成することで、 WC/Co二相組織が得られると考えられる。

WC相は非化学両論組成を持たないため、Fig.5 (c) に示さ れるように、WC相の割合が増えるほど液相 + WC相の二 相領域は狭くなる。そのため、L-PBF造形に伴う組成シフト によって、造形体の組成は液相 + WC相の二相領域から外 れる可能性が高くなる。実際、WC相の割合が高い原料粉末 (WC/17 mass % Co) を用いた場合、熱処理による組織制御 が難しい^{15,19)}。例えば、図中の白色の三角形 (△) で表される 組成の粉末を用いてL-PBF造形を行うと、造形体組成は灰 色の三角形の位置までシフトする¹⁵⁾。シフトした組成では、 液相とWC相だけでなく η-W₃Co₃C相も安定なため、熱処理 後も η-W₃Co₃C相が残存する。こうした組成シフトに伴う η-W₃Co₃C相の安定化を防ぐ方法として、原料粉末に炭素 (グラファイト)を添加するという方法がある。一例として、 グラファイトを約0.5 mass%添加し、白色の菱形(◇)で示 される組成の粉末を用いてL-PBF造形を行うと、灰色の菱 形の位置まで造形体組成がシフトする¹⁵⁾。この場合、造形体 組成は液相 + WC相の二相領域に入るため、熱処理後には η-W₃Co₃C相は消失する。以上のように、熱処理による組織 制御を行う上では、造形による組成のシフトを考慮した原料 粉末組成の選定が重要である。

また、液相が発生する温度での熱処理は、液相の一部が気 孔(やクラック)に流入するため、気孔の消失(相対密度の向 上)にも有効である¹⁵⁾。現時点では、造形時のベースプレー トからの剥離を防ぎつつ、造形ままの超硬合金積層造形体の 相対密度を実用に耐える水準まで向上させることは難しい。 よって、熱処理(+熱間等方静水圧プレス処理:HIP処理) によって気孔やクラックなどの欠陥を取り除くことが必要で ある。

3.2 L-PBF 造形パラメータによる組織制御¹⁶⁾

熱処理による組織制御の課題として、組成のシフトによる η-W₃Co₃C相の安定化について述べた。また、造形時にWC 分解領域が高い割合で形成するほどレーザのエネルギー密度 が大きい場合、WC粒子径が原料粉末に比べて粗大化する。 さらに熱処理過程でもWC粒子は粗大化するため、WC/Co 二相組織に制御(加えて気孔等を除去)したとしても、従来 の超硬合金に比べて機械的性質は低い。したがって、熱処理 による組織制御が可能としても、造形時にWC分解領域の形 成を抑制する必要がある。そこで、組成のシフトが小さく、 WC分解領域の形成を抑制できるL-PBF造形のプロセスパ ラメータを、機械学習を活用して探索した研究を紹介する。

まず、様々なプロセス条件で作製したWC/Co超硬合金積 層造形体におけるWC分解領域の形成量を定量化する方法 を検討した。SEM像からWC分解領域の面積率を計測する ために、組織形態のパターンから画像の識別や領域分け(セ グメンテーション)を行うことのできる畳み込みニューラル ネットワーク(Convolutional Neural Network: CNN)²⁰⁾を 用いた。CNNを用いた理由として、WC分解領域とそれ以外 の領域を通常の画像解析のように領域間のコントラスト差で 判別することが困難なことが挙げられる。判別する対象が相 であれば、電子顕微鏡像の場合には化学組成の違いによって 各相のコントラスト差が生じる。よって閾値を決めて二値化 処理を行えば、各相の面積率の定量化が可能である。しかし ながら、複数の相を含む組織領域であるWC分解領域やWC/ Co二相領域は各領域内に明・暗部をそれぞれ含むため、コ ントラスト差のみでは判別することができない。そこで、各 組織領域における組織形態のパターンを利用して判別が可能 な CNN を用いた。CNN による組織の判別を行う場合、CNN を学習させるための画像と判別後の正解画像を準備する必 要がある。本研究では、Fig.3 (a) に示したようなシングルト ラック試験によって得られた組織画像およびそれを手動で WC分解領域、WC/Co二相領域、欠陥 (気孔、クラック) に 分類した画像を13枚用意し、それを CNN に学習させた。学 習済み CNNを用いて、異なるレーザ出力 (66 W~300 W)、 走査速度 (100 mm・s⁻¹~1200 mm・s⁻¹)、スポット径 (75 μ m、 150 μ m) で造形したWC/25 mass% Co超硬合金積層造形体 の組織を判別した結果の一例をFig.6 (a-f) に示す。教師デー

Fig.6 Segmentation of microstructural regions using a convolutional neural network and quantified area fraction of WC decomposition region plotted as functions of laser power and scan speed¹⁶⁾.

タがシングルトラック試験によって得られた組織画像であっ ても、比較的精度よく組織を判別できることが明らかとなっ た。このようにして、様々な条件で作製したWC/25 mass% Co超硬合金積層造形体の微視組織を解析し、WC分解領域の 面積率 (*A*_d)を定量化した結果をFig.6 (g)に示す。この図で は、縦軸に走査速度、横軸にレーザ出力を用い、150 µmのス ポット径で作製した試料の解析結果のみを示している。円形 のプロットをWC分解領域の面積率の違いで4階調に分けて 表示している。また、×印で示されるプロットは、造形を試 みたもののレーザの投入エネルギーが小さく固化しなかっ た (Unconsolidated)条件である。造形できた範囲では、主に レーザ出力に強く影響を受けてWC分解領域の面積率が変化 する傾向が見られる。

このようにして得られた定量的なデータから、WC分解領 域の形成が抑制でき、かつ造形時に固化する条件をSupport vector machine (SVM)²¹⁾を用いて探索した。SVMでは、異 なるクラスに属するデータ間の境界を見つけるために、デー タからの距離が最大になる平面もしくは曲面を探索する。 本研究では、造形時に固化するかどうか (Consolidated or Unconsolidated)、WC分解領域の面積率が10%未満かどう か ($A_d < 10\%$ or $A_d \ge 10\%$) によりデータ (レーザ出力、走 査速度、スポット径)を分類し、それらの間を隔てる境界面 を探索した。得られた結果について、スポット径150 µmに おける断面を表示した結果をFig.7(a)に示す。図中の斜め の破線がConsolidatedの領域とUnconsolidatedの領域、縦 の破線がA_d < 10%の領域とA_d ≥ 10%の領域を隔てる境界面 としてSVMが推定したものである。これら2つの境界線に よって囲まれる太線の三角形の領域では、Consolidated かつ A_d < 10%であることが予想される。つまり、造形時に固化し、 WC分解領域の面積率も低減できると考えられる。そこでこ の三角形内の条件で造形を行い、WC分解領域の面積率を評 価した結果の一部を Fig.7 (b, c) に示す。 この図より、 三角形 内の条件ではWC分解領域の面積率がいずれも10%未満で あった。また、比較のため三角形外の条件についても造形を 行い、WC分解領域の面積率を評価した(Fig.7(d))。この条 件では、WC分解領域の面積率は約50%と高い。以上のこと から、SVMによって推定したプロセスマップの妥当性が示 されるとともに、WC分解領域の形成を抑制できるプロセス

Fig.7 (a) Process map obtained by support vector machine (SVM) using the quantified data shown in Fig.6¹⁶. (b-d) SEM images and corresponding CNN segmentation images of the samples fabricated under (b, c) SVMrecommended conditions (inside the bold triangle in (a)) and (d) a nonrecommended condition¹⁶.

パラメータの範囲を得ることができた。こうした条件では、 造形による組成シフトも小さい。SVMの非推奨条件(レー ザ出力:195 W、走査速度:300 mm・s⁻¹)ではCoおよびC の平均濃度が造形によりそれぞれ1.3 mol%、0.8 mol%程度 低下するが、推奨条件(レーザ出力:66W、走査速度:100 mm・s⁻¹)ではCo濃度は0.5 mol%程度の低下に抑えられ、C 濃度の低下はほぼ検出されなかった¹⁶⁾。また、このSVMによ る推奨条件で作製した超硬合金積層造形体に熱処理・HIP処 理を施し、微視組織と機械的性質を評価した結果、推奨条件 外で作製したものと比べてWC粒子の微細化、ビッカース硬 度および抗折力の向上が確認された¹⁶⁾。今後はさらなる条件 最適化によって、従来の超硬合金と同程度の機械的性質を有 する超硬合金積層造形体の開発し、高機能スマート金型への 応用を目指す。

4 まとめ

超硬合金の積層造形、状態図に基づく組織形成の理解、熱 処理やプロセスインフォマティクスによる組織制御につい て概説した。超硬合金は、従来の焼結法によって優れた硬度、 破壊靭性、耐摩耗性をもつ材料が作られており、高い要求性 能を満足している。超硬合金積層造形体では、そうした高い 要求性能を満たすことは非常に困難である。しかしながら、 近年発達している状態図計算やデータ科学の活用すること で、実用に耐えうる超硬合金製品が実現しつつある。今後は さらなる粉末組成、プロセスパラメータ・熱処理条件の最適 化によって、従来の超硬合金と同等の性能を有する材料の開 発が求められる。また、レーザの局所加熱・急冷凝固過程を 活かせるような超硬合金の材料選定についても検討する必要 がある。

謝辞

本研究の成果の一部は、公益財団法人科学技術交流財団 共同研究推進事業および知の拠点あいち重点研究プロジェク ト(Ⅱ期およびⅢ期)、JSPS科研費 JP22H05281の支援のも と実施された。機械学習による解析は名古屋大学 大学院生 柴勇輔君の尽力によるものである。ここに特記して謝意を 記す。

参考文献

- 1)京極秀樹,池庄司敏孝:図解 金属3D積層造形のきそ, 日刊工業新聞社,(2017).
- 小泉雄一郎,千葉晶彦,野村直之,中野貴由:まてりあ, 56 (2017), 686.

- 3) F.H.Sun, Z.M.Zhang, M.Chen and H.S.Shen : Diamond and Related Materials, 12 (2003), 711.
- 4) J.P.Kruth, X.Wang, T.Laoui and L.Froyen : Assembly Automation, 23 (2003), 357.
- 5) B. Vrancken, W. E. King and M. J. Matthews : Procedia CIRP, 74 (2018), 107.
- 6) S.L. Campanelli, N. Contuzzi, P. Posa and A. Angelastro: Materials, 12 (2019), 2397.
- 7) T.Schwanekamp, G.Marginean, M.Reuber and A.Ostendorf : International Journal of Refractory Metals and Hard Materials, 105 (2022), 105814.
- Y.Zhao, H.Wang, L.Zhang, X.Li, Z.Guo, J.Zhang, D.Yi, B.Liu and P.Bai : Journal of Materials Research and Technology, 20 (2022), 3512.
- 9) J.P.Kruth, P.Mercelis, J.V.Vaerenbergh, L.Froyen and M.Rombouts : Rapid Prototyping Journal, 11 (2005), 26.
- 10) J. P. Kruth, G. Levy, F. Klocke and T. H. C. Childs : CIRP Annual, 56 (2007) 2, 730.
- X. C. Wang, T. Laoui, J. Bonse, J. P. Kruth, B. Lauwers and L. Froyen : Int. J. Adv. Manuf. Technol., 19 (2002), 351.
- S.Kumar : Journal of Materials. Processing Technology, 209 (2009) 8, 3840.
- E. Uhlmann, A. Bergmann and W. Gridin : Procedia CIRP, 35 (2015), 8.
- 14) 伊部博之,加藤雄太,山田純也,加藤正樹,鈴木飛鳥,高田尚記,小橋眞:粉体および粉末冶金,67 (2020),313.
- H.Ibe, Y.Kato, J.Yamada, M.Kato, A.Suzuki, N.Takata and M.Kobashi : Materials & Design, 210 (2021), 110034.
- 16) A. Suzuki, Y. Shiba, H. Ibe, N. Takata and M. Kobashi : Additive Manufacturing, 59 (2022), 103089.
- A.F.Guillermet : Metallurgical Transactions A, 20 (1989), 935.
- W. Kurz and D. J. Fisher : Fundamental of Solidification, Trans Tech Publication, (1984), 121.
- D.Bricín, M.Ackermann, Z.Jansa, D.Kubátová, A.Kříž, Z.Špirit and J.Šafka : Metals, 10 (2020), 1477.
- 20) 斎藤康毅: ゼロから作る Deep Learning Python で学ぶ ディープラーニングの理論と実装, O'REILLY, (2016).
- 竹内一郎, 鳥山昌幸: サポートベクトルマシン, 講談社, 第4版, (2018).

(2022年9月26日受付)