

電磁鋼板のせん断加工

Shearing of Electrical Steel Sheets

白鳥智美 Tomomi Shiratori

富山大学 学術研究部工学系 教授

, はじめに

持続可能な社会の実現 (SDGs) に向けて生活様式の転換が 始まっている。グリーントランスフォーメーション (GX) が 唱えられ、エネルギー消費の効率化がさらに求められてきて いる。この中でモーターは電動車や圧縮機、家電製品やスマー トフォンに至るまであらゆる機器に装着され、省エネルギー 需要に応える対応が求められている。モーターの内部には鉄 心が組み込まれ、電磁鋼板が採用されている。鉄心の形状は 主にせん断加工という雄型と雌型を用いて材料を押さえなが ら打抜く工法で製作される。せん断加工された鉄心材である 電磁鋼板はせん断ひずみによって被加工材内部の磁区が変化 する¹⁾。この磁区変化に伴ってモーターが回転する際に生じ た磁束が鉄心内部を通過しにくくなり、一部が熱に転換され エネルギー損が生じる。このエネルギー損は鉄損と呼ばれる。

せん断加工は雄型であるパンチと雌型であるダイを金型に 組込み、プレス機を高速化することで所望の形状を高生産性 で担保できる。このため、電磁鋼板のせん断加工ではある程 度までの鉄損を許容し、生産コストとモーター性能をバラン スさせて生産活動が行われてきている。

SDGsやGXに対応した低鉄損で高効率なモーターの実現に は、電磁鋼板のせん断加工時に生じるせん断ひずみの影響を除 去できれば、鉄損は被加工材料起因のみとなり最小化が可能と なる。本報ではせん断加工の基礎的な仕組みから最新の鉄損 低減に向けたせん断加工用の金型の高度化事例を紹介する。

2 せん断加工の基礎

図1はせん断加工の模式図である。パンチとダイで被加工 材料を押さえ、プレス機から与えられる力を使って打抜く加 工法である。打抜いた材料の内部表面は切り口面と呼ばれ る。図2は切り口面の名称とパンチとダイの隙間であるクリ アランスを変化させた場合の切り口面の形態を示した模式 図である。切り口面はパンチ挿入側からだれ、せん断面、破 断面、かえりで構成される。だれはパンチが被加工材料に接 触して弾性変形してから塑性変形が開始されるまでに形成 される。せん断面はパンチの挿入方向と被加工材料の変形 方向がそろい、すべり変形が生じることで得られる平滑面で

図1 せん断加工の模式図 (Online version in color.)

図2 切り口面の名称とクリアランスによる切り口面の違い

ある。破断はパンチがダイに近づくにつれて打抜かれる材 料に曲げモーメントが加わるためにすべり変形が維持でき ず破壊が起きた結果である。かえりはパンチ先端とダイ先 端を結んだ線上で破断によるき裂伝播が会合しないことに よって生じる。

クリアランスは過小な場合には二次せん断と言われるダイ 側の材料にせん断面が生じる。クリアランスが大きい場合に はだれは大きく破断やかえりも大きくなる。したがって、適 正なクリアランスを設定して切り口面が要求品質を満たす状 態に保つ必要がある。

鉄心用材料と切り口面の確保

モーター用の鉄心材料には無方向性電磁鋼板があり、板 厚が0.12 mm~0.5 mm程度で広く採用されてきている。これ とは別に非晶質なアモルファス電磁鋼板のモーターへの採

切り口面確保の影響因子

図3 せん断加工における切り口面確保の主要要素 (Online version in color.)

用が期待されている。アモルファス電磁鋼板は板厚が0.025 mm程度と薄い箔材であり、引張強さが2.1 GPa、伸びはわ ずか1%程度しかなく脆性材料となる。硬度が700 HVを超 える材料であり、工具の硬さとの差が小さくなるため工具 が摩耗しやすくこれまでにモーターへの展開は一部にとど まってきている。

図3は鉄心のせん断加工における切り口面確保の主要要素 を示した。せん断加工では一般に板厚に対する比率でクリア ランスを設定する。クリアランスの設定によって切り口面の 中のだれやせん断面の比率を変化させて要求品質と適合させ る。無方向性電磁鋼板とアモルファス電磁鋼板のせん断加工 では図3の中で特に工具精度に注目する。一般に工具は合金 工具鋼や超硬工具などを品質や耐久性、コストに配慮して工 具種を選択する。工具の形状は研削加工やワイヤーカット放 電加工によって仕上げる。

低鉄損な鉄心せん断加工を実現するには、打抜き後の材料 の内部にひずみを残さずに磁区を乱さないせん断加工の実現 が必要となる。また、切り口面は平滑であるほど磁束通過が 容易となるため破断が少ない状態が望ましく、クリアランス を小さく取れる金型や工具が望まれている。

4 工具仕上げの高度化事例

図4は超硬材を研削加工で仕上げた一般的なパンチをアル ゴンイオンで2時間のスパッタリング加工からパンチの先端 をナノメートル単位まで先鋭化したで事例である²⁾。図4 (a) の超硬工具の先端部は1 µmから2 µm程度の範囲で一部が脱 落している。これは包丁に例えると刃こぼれしている状態で ある。一方で図4(b)のイオン先鋭化後では、先端部は均質 に0 umレベルの先鋭化を達成し、包丁を研いだ状態である。 汎用のイオンスパッタ工法をせん断加工用工具に展開するこ とで、従来よりも鋭利な工具を製作できる状況となってきて いる。

⁽a)通常研削仕上げ

図4 超硬パンチのエッジ状態の違い

368

図5 ナノ周期構造を付与したダイヤモンドコーティング超硬パンチの電子顕微鏡観察結果 (Online version in color.)

図6 無方向性電磁鋼板の打抜き穴切り口面の電子顕微鏡観察結果

図5はダイヤモンドをコーティングした超硬工具の先端を フェムト秒の極短パルスレーザによって工具の先端を先鋭化 した事例である³³。このレーザ加工パンチでは、パンチの側 面にナノメートル単位の溝を加工している。この溝は0.001 mm(1µm)の範囲に3本の溝を周期的に配置しており、理論 上0.33µm(330 nm)のナノメートル単位のナノ周期構造と なっている。ナノ周期構造を工具に用いた場合には摩擦係数 が下がる効果が知られている⁴⁰。工具表面にナノ周期構造を 付与することで、低摩擦で高耐用な工具の創出が期待できる 状況となってきている。

5 無方向性電磁鋼板のせん断加工 へのナノメートル精度工具の展開

図6は低鉄損な無方向性電磁鋼板のせん断加工に向けて、 超硬材の通常研削仕上げ工具とイオン先鋭化パンチ、ナノ周 期構造付きパンチを用いてせん断加工を行い、打抜いた穴の 切り口面の電子顕微鏡観察結果である⁵⁾。被加工材料は板厚 0.5 mmの無方向性電磁鋼板でクリアランスは超硬研削仕上 げが3.0 µm、イオン先鋭化パンチが7.5 µm、ナノ周期構造付 きパンチが3.5 μmとし、せん断速度は5 mm/sとした。ダイ は超硬材の研削仕上げを用いた。図6 (a)の研削仕上げでは2 次せん断が生じて図中左右方向に切り口は不均質であった。 図6 (b)のイオン先鋭化工具では2次せん断は解消して均質 化している。図6 (c)のナノ周期構造付き工具では切り口面 はせん断面がほとんどを占めるオールせん断となっている。 図6 (b)のイオン先鋭化工具で生じていた破断が図6 (c)の ナノ周期構造付き工具では解消している。図6 (a)の研削仕 上げと図6 (c)はクリアランスが0.5 μmしか違わない。した がって、ナノ周期構造には切り口面をオールせん断化する効 果があると考えられる。

図7は図6の切り口面の被加工材内部を打抜いた穴の左右 で結晶粒を電子線後方解析した結果である⁵⁾。解析には結晶 方位差角度(KAM)を用いた。KAMの値は相当塑性ひずみ と対応することが知られている⁶⁾。図7(a)と図7(b)の研削 仕上げでは図中白色で示した結晶粒がKAMで約2°となって おり、この結晶粒は弱く塑性変形している。図7(c)と図7(d) のイオン先鋭化工具では、図7(d)の右側の測定結果に白矢 印で示した結晶粒が切り口面から離れた位置で弱く塑性変形 している。また、図7(c)では黒矢印部で破断が起きている。

図7 無方向性電磁鋼板の打抜き穴断面の結晶方位差 角度解析結果 (Online version in color.)

この部分のKAMは最大の5°となっており塑性変形度合い は高い。加工硬化能を失って破断した部分と考えられる。図 7 (e) と図7 (f) のナノ周期構造付き工具には白矢印と黒矢印 が存在しない。つまり、切り口面近傍にKAMで示される塑 性変形をした結晶粒が集中し、かつ破断が無い平滑な切り口 面が得られている。弱い塑性変形領域がないことは材料内部

(a)通常研削仕上げ

(b)イオン先鋭化工具せん断品

(c)ナノ周期構造付き工具

図8 アモルファス電磁鋼板5枚積層せん断品の3枚目穴表 面の電子顕微鏡観察結果

における弾性変形や塑性変形による磁区変化¹⁾を抑制し、低 鉄損な結晶粒の変形状態となっていると考えられる。

図8は、超硬材の通常研削仕上げ工具とイオン先鋭化パン チ、ナノ周期構造付きパンチを用いて、5枚を積層したアモ ルファス電磁鋼板をせん断加工し、打抜き穴表面右側を電子 顕微鏡で観察した結果である³⁰。穴の表面は5枚積層の内、パ ンチ側から3枚目を観察した。図8(a)の研削仕上げでは図 の縦方向にき裂が生じ、横方向にはしわが生じている。加工 影響を受けている部分の長さは図の左右方向に約80 µm とな り、板厚25 µmの3倍相当となっている。図8(b)のイオン先 鋭化工具では、き裂やしわは減少し、加工影響長さは板厚の 2倍相当以下に減少している。図8(c)のナノ周期構造付き工 具では、加工影響長さは18 µm まで減少している。

図9は図8で示した加工影響長さを5枚の積層品すべてで 調査した結果である³⁾。この図から研削仕上げ工具では加工 影響幅がパンチ側から3枚目で最大化していることがわか

図9 アモルファス電磁鋼板5枚積層せん断品の打抜き穴表面加工影 響長さ測定結果

る。イオン先鋭化工具になると概ね加工影響長さは半減す る。ナノ周期構造付き工具を用いると図中横線で引いた板 厚25 μmの線よりも低い値の加工影響長さに5枚すべてが収 まっている。アモルファス電磁鋼板を5枚積層してせん断加 工する場合には、特にナノ周期構造付き工具で加工影響長さ が小さくなると言える。単にナノメートル単位まで先鋭化す るイオン先鋭化よりも、ナノ周期構造構造付き工具の加工影 響長さが小さくなることは、ナノ周期構造によって穴の半径 方向にき裂などの故障が広がらない、せん断応力の刃先への 集中が起こると考えられる。つまり、1 μmに3つのナノメー トル単位の溝の頂点部分にせん断応力が集中することが加工 影響長さを小さく抑制する要因の1つになると考えられる。

ろ おわりに

電磁鋼板のせん断加工を基礎から先進の加工事例までを紹 介した。一般に広く用いられている研削工具のみでは電磁鋼 板せん断加工の高度化はむずかしいと考えられた。SDGsや GXに対応したモーターの鉄心加工には、イオン先鋭化工具 やナノメートル周期構造付き工具の採用が望ましいことがわ かってきている。工具精度をナノメートル単位まで上げるの みで鉄損を抑えられる方向性がみえてきていると言える。金 型や工具に対してもこれまでの常識を改める時期が近づい ているとも考えられる。金型技術のブラシュアップからモー ターの高効率化を実現してSDGsに貢献していきたい。

参考文献

- 1)千田邦浩,石田昌義,中須洋一,八木正昭:電学論A,125 (2005) 3,241.
- 2)白鳥智美,吉野友章,鈴木洋平,中野禅,楊明:塑性と加工,60 (2019) 698, 58.
- 3) T.Aizawa, T.Shiratori, Y.Kira, T.Yoshino and Y.Suzuki : Micromachines, 12 (2021) 568, 1.
- 4) 沢田博司,川原公介,二宮孝文,森淳暢,黒澤宏:精密工 学会誌,70 (2004) 1, 133.
- 5) T. Shiratori, Y. Suzuki and T. Aizawa : Proc. WCMNM2022, (2022), 199.
- 6)野村恭兵,久布白圭司,榊原洋平,高橋聰,吉澤廣喜:材
 料,61 (2014) 4,371.

(2023年3月13日受付)